|
from data.base_dataset import BaseDataset, get_params, get_transform |
|
from PIL import Image |
|
import util.util as util |
|
import os |
|
|
|
|
|
class Pix2pixDataset(BaseDataset): |
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
parser.add_argument('--no_pairing_check', action='store_true', |
|
help='If specified, skip sanity check of correct label-image file pairing') |
|
return parser |
|
|
|
def initialize(self, opt): |
|
self.opt = opt |
|
|
|
label_paths, image_paths, instance_paths = self.get_paths(opt) |
|
|
|
util.natural_sort(label_paths) |
|
util.natural_sort(image_paths) |
|
if not opt.no_instance: |
|
util.natural_sort(instance_paths) |
|
|
|
label_paths = label_paths[:opt.max_dataset_size] |
|
image_paths = image_paths[:opt.max_dataset_size] |
|
instance_paths = instance_paths[:opt.max_dataset_size] |
|
|
|
if not opt.no_pairing_check: |
|
for path1, path2 in zip(label_paths, image_paths): |
|
assert self.paths_match(path1, path2), \ |
|
"The label-image pair (%s, %s) do not look like the right pair because the filenames are quite different. Are you sure about the pairing? Please see data/pix2pix_dataset.py to see what is going on, and use --no_pairing_check to bypass this." % (path1, path2) |
|
|
|
self.label_paths = label_paths |
|
self.image_paths = image_paths |
|
self.instance_paths = instance_paths |
|
|
|
size = len(self.label_paths) |
|
self.dataset_size = size |
|
|
|
def get_paths(self, opt): |
|
label_paths = [] |
|
image_paths = [] |
|
instance_paths = [] |
|
assert False, "A subclass of Pix2pixDataset must override self.get_paths(self, opt)" |
|
return label_paths, image_paths, instance_paths |
|
|
|
def paths_match(self, path1, path2): |
|
filename1_without_ext = os.path.splitext(os.path.basename(path1))[0] |
|
filename2_without_ext = os.path.splitext(os.path.basename(path2))[0] |
|
return filename1_without_ext == filename2_without_ext |
|
|
|
def __getitem__(self, index): |
|
|
|
label_path = self.label_paths[index] |
|
label = Image.open(label_path) |
|
if self.opt.task != 'SIS': |
|
label = label.convert('RGB') |
|
params = get_params(self.opt, label.size) |
|
|
|
if self.opt.task != 'SIS': |
|
transform_label = get_transform(self.opt, params) |
|
label_tensor = transform_label(label) |
|
else: |
|
transform_label = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) |
|
label_tensor = transform_label(label) * 255.0 |
|
label_tensor[label_tensor == 255] = self.opt.label_nc |
|
|
|
|
|
image_path = self.image_paths[index] |
|
print("Images_path",image_path) |
|
assert self.paths_match(label_path, image_path), \ |
|
"The label_path %s and image_path %s don't match." % \ |
|
(label_path, image_path) |
|
image = Image.open(image_path) |
|
image = image.convert('RGB') |
|
|
|
transform_image = get_transform(self.opt, params) |
|
image_tensor = transform_image(image) |
|
|
|
|
|
if self.opt.no_instance: |
|
instance_tensor = 0 |
|
else: |
|
instance_path = self.instance_paths[index] |
|
instance = Image.open(instance_path) |
|
if instance.mode == 'L': |
|
instance_tensor = transform_label(instance) * 255 |
|
instance_tensor = instance_tensor.long() |
|
else: |
|
instance_tensor = transform_label(instance) |
|
|
|
input_dict = {'label': label_tensor, |
|
'instance': instance_tensor, |
|
'image': image_tensor, |
|
'path': image_path, |
|
'cpath': label_path |
|
} |
|
|
|
|
|
len_dict=len(input_dict['label']) |
|
print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",len_dict) |
|
self.postprocess(input_dict) |
|
|
|
return input_dict |
|
|
|
def postprocess(self, input_dict): |
|
return input_dict |
|
|
|
def __len__(self): |
|
return self.dataset_size |
|
|