import numpy as np | |
from torch.utils import data | |
def InfiniteSampler(n): | |
# i = 0 | |
i = n - 1 | |
order = np.random.permutation(n) | |
while True: | |
yield order[i] | |
i += 1 | |
if i >= n: | |
np.random.seed() | |
order = np.random.permutation(n) | |
i = 0 | |
class InfiniteSamplerWrapper(data.sampler.Sampler): | |
def __init__(self, data_source): | |
self.num_samples = len(data_source) | |
def __iter__(self): | |
return iter(InfiniteSampler(self.num_samples)) | |
def __len__(self): | |
return 2 ** 31 |