|
import os |
|
from data.pix2pix_dataset import Pix2pixDataset, BaseDataset |
|
from data.image_folder import make_dataset |
|
from torchvision import transforms |
|
import os |
|
from PIL import Image |
|
|
|
class Summer2WinterYosemiteDataset(BaseDataset): |
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
parser = Pix2pixDataset.modify_commandline_options(parser, is_train) |
|
parser.set_defaults(preprocess_mode='resize_and_crop') |
|
parser.set_defaults(load_size=512) |
|
parser.set_defaults(crop_size=256) |
|
return parser |
|
|
|
def initialize(self, opt): |
|
self.opt = opt |
|
label_paths, image_paths, instance_paths = self.get_paths(opt) |
|
self.label_paths = label_paths[:opt.max_dataset_size] |
|
self.image_paths = image_paths[:opt.max_dataset_size] |
|
self.dataset_size = len(self.label_paths) |
|
|
|
print(f"Number of labels: {len(self.label_paths)}, Number of images: {len(self.image_paths)}") |
|
if len(self.label_paths) != len(self.image_paths): |
|
raise ValueError("The number of labels and images do not match.") |
|
|
|
|
|
def get_paths(self, opt): |
|
croot = opt.croot |
|
sroot = opt.sroot |
|
c_image_dir = os.path.join(croot, f'{opt.phase}A') |
|
s_image_dir = os.path.join(sroot, f'{opt.phase}B') |
|
c_image_paths = sorted(make_dataset(c_image_dir, recursive=True)) |
|
s_image_paths = sorted(make_dataset(s_image_dir, recursive=True)) |
|
return c_image_paths, s_image_paths, [] |
|
|
|
def __getitem__(self, index): |
|
label_path = self.label_paths[index] |
|
image_path = self.image_paths[index] |
|
label = Image.open(label_path).convert('RGB') |
|
image = Image.open(image_path).convert('RGB') |
|
transform = transforms.Compose([ |
|
transforms.Resize((self.opt.load_size, self.opt.load_size)), |
|
transforms.RandomCrop(self.opt.crop_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
]) |
|
return {'image': transform(label), 'label': transform(image),"cpath":image_path} |
|
|
|
def __len__(self): |
|
return self.dataset_size |
|
|
|
|