|
import torch |
|
from models.networks.base_network import BaseNetwork |
|
from models.networks.loss import * |
|
from models.networks.discriminator import * |
|
from models.networks.generator import * |
|
from models.networks.encoder import * |
|
import util.util as util |
|
|
|
|
|
def find_network_using_name(target_network_name, filename): |
|
target_class_name = target_network_name + filename |
|
module_name = 'models.networks.' + filename |
|
network = util.find_class_in_module(target_class_name, module_name) |
|
|
|
assert issubclass(network, BaseNetwork), \ |
|
"Class %s should be a subclass of BaseNetwork" % network |
|
|
|
return network |
|
|
|
|
|
def modify_commandline_options(parser, is_train): |
|
opt, _ = parser.parse_known_args() |
|
|
|
netG_cls = find_network_using_name(opt.netG, 'generator') |
|
parser = netG_cls.modify_commandline_options(parser, is_train) |
|
if is_train: |
|
netD_cls = find_network_using_name(opt.netD, 'discriminator') |
|
parser = netD_cls.modify_commandline_options(parser, is_train) |
|
netE_cls = find_network_using_name('conv', 'encoder') |
|
parser = netE_cls.modify_commandline_options(parser, is_train) |
|
|
|
return parser |
|
|
|
|
|
def create_network(cls, opt): |
|
net = cls(opt) |
|
net.print_network() |
|
if len(opt.gpu_ids) > 0: |
|
assert(torch.cuda.is_available()) |
|
net.cuda() |
|
net.init_weights(opt.init_type, opt.init_variance) |
|
return net |
|
|
|
|
|
def define_G(opt): |
|
netG_cls = find_network_using_name(opt.netG, 'generator') |
|
return create_network(netG_cls, opt) |
|
|
|
|
|
def define_D(opt): |
|
netD_cls = find_network_using_name(opt.netD, 'discriminator') |
|
return create_network(netD_cls, opt) |
|
|
|
|
|
def define_E(opt): |
|
|
|
netE_cls = find_network_using_name('conv', 'encoder') |
|
return create_network(netE_cls, opt) |
|
|