|
import torch.nn as nn |
|
from torch.nn import init |
|
from torchinfo import summary |
|
|
|
class BaseNetwork(nn.Module): |
|
def __init__(self): |
|
super(BaseNetwork, self).__init__() |
|
|
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
return parser |
|
|
|
def print_network(self): |
|
if isinstance(self, list): |
|
self = self[0] |
|
num_params = 0 |
|
for param in self.parameters(): |
|
num_params += param.numel() |
|
print('Network [%s] was created. Total number of parameters: %.1f million. ' |
|
'To see the architecture, do print(network).' |
|
% (type(self).__name__, num_params / 1000000)) |
|
print(self) |
|
|
|
def init_weights(self, init_type='normal', gain=0.02): |
|
def init_func(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('BatchNorm2d') != -1: |
|
if hasattr(m, 'weight') and m.weight is not None: |
|
init.normal_(m.weight.data, 1.0, gain) |
|
if hasattr(m, 'bias') and m.bias is not None: |
|
init.constant_(m.bias.data, 0.0) |
|
elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): |
|
if init_type == 'normal': |
|
init.normal_(m.weight.data, 0.0, gain) |
|
elif init_type == 'xavier': |
|
init.xavier_normal_(m.weight.data, gain=gain) |
|
elif init_type == 'xavier_uniform': |
|
init.xavier_uniform_(m.weight.data, gain=1.0) |
|
elif init_type == 'kaiming': |
|
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
elif init_type == 'orthogonal': |
|
init.orthogonal_(m.weight.data, gain=gain) |
|
elif init_type == 'none': |
|
m.reset_parameters() |
|
else: |
|
raise NotImplementedError('initialization method [%s] is not implemented' % init_type) |
|
if hasattr(m, 'bias') and m.bias is not None: |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
self.apply(init_func) |
|
|
|
|
|
for m in self.children(): |
|
if hasattr(m, 'init_weights'): |
|
m.init_weights(init_type, gain) |
|
|