|
import torch.nn as nn |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from models.networks.base_network import BaseNetwork |
|
from models.networks.normalization import get_norm_layer |
|
|
|
|
|
class ConvEncoder(BaseNetwork): |
|
""" Same architecture as the image discriminator """ |
|
|
|
def __init__(self, opt): |
|
super().__init__() |
|
self.opt = opt |
|
kw = 3 |
|
pw = int(np.ceil((kw - 1.0) / 2)) |
|
ndf = opt.ngf |
|
norm_layer = get_norm_layer(opt, opt.norm_E) |
|
self.layer1 = norm_layer(nn.Conv2d(3, ndf, kw, stride=2, padding=pw)) |
|
self.layer2 = norm_layer(nn.Conv2d(ndf * 1, ndf * 2, kw, stride=2, padding=pw)) |
|
self.layer3 = norm_layer(nn.Conv2d(ndf * 2, ndf * 4, kw, stride=2, padding=pw)) |
|
self.layer4 = norm_layer(nn.Conv2d(ndf * 4, ndf * 8, kw, stride=2, padding=pw)) |
|
self.layer5 = norm_layer(nn.Conv2d(ndf * 8, ndf * 8, kw, stride=2, padding=pw)) |
|
if opt.crop_size >= 256: |
|
self.layer6 = norm_layer(nn.Conv2d(ndf * 8, ndf * 8, kw, stride=2, padding=pw)) |
|
|
|
self.so = s0 = 4 |
|
self.fc_mu = nn.Linear(ndf * 8 * s0 * s0, 256) |
|
self.fc_var = nn.Linear(ndf * 8 * s0 * s0, 256) |
|
|
|
self.actvn = nn.LeakyReLU(0.2, False) |
|
|
|
def forward(self, x): |
|
if x.size(2) != 256 or x.size(3) != 256: |
|
x = F.interpolate(x, size=(256, 256), mode='bilinear') |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(self.actvn(x)) |
|
x = self.layer3(self.actvn(x)) |
|
x = self.layer4(self.actvn(x)) |
|
x = self.layer5(self.actvn(x)) |
|
if self.opt.crop_size >= 256: |
|
x = self.layer6(self.actvn(x)) |
|
x = self.actvn(x) |
|
|
|
x = x.view(x.size(0), -1) |
|
mu = self.fc_mu(x) |
|
logvar = self.fc_var(x) |
|
|
|
return mu, logvar |
|
|