|
import math
|
|
import numpy as np
|
|
from torch.optim import Optimizer, lr_scheduler
|
|
|
|
|
|
class WarmUpLR(lr_scheduler._LRScheduler):
|
|
"""Warm Up learning rate strategy
|
|
|
|
Before warmup_step, lr increases from 0 to initial learning rate gradually
|
|
After warmup_step, lr decreases from initial learning rate according to the negative square root of "step"
|
|
If warmup_step=0, skip the phase of warm up and step into decay phase directly
|
|
|
|
"""
|
|
|
|
def __init__(self, optimizer, warmup_step, last_epoch=-1):
|
|
self.warmup_step = warmup_step
|
|
super(WarmUpLR, self).__init__(optimizer, last_epoch=last_epoch)
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch < self.warmup_step:
|
|
return [base_lr * ((self.last_epoch + 1) / self.warmup_step) \
|
|
for base_lr in self.base_lrs]
|
|
else:
|
|
return [base_lr * math.pow(self.last_epoch + 1, -0.5) \
|
|
for base_lr in self.base_lrs]
|
|
|
|
|
|
class CosineAnnealingWarmUpLR(lr_scheduler._LRScheduler):
|
|
"""Warm Up learning rate strategy
|
|
|
|
Before warmup_step, lr increases from 0 to initial learning rate of "optimizer" gradually
|
|
After warmup_step, lr decreases from initial learning rate according to cosine annealing
|
|
If warmup_step=0, skip the phase of warm up and step into decay phase directly
|
|
|
|
"""
|
|
|
|
def __init__(self, optimizer, warmup_step, max_step, min_lr=0, last_epoch=-1):
|
|
self.warmup_step = warmup_step
|
|
self.max_step = max_step
|
|
self.min_lr = min_lr
|
|
super(CosineAnnealingWarmUpLR, self).__init__(optimizer, last_epoch=last_epoch)
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch < self.warmup_step:
|
|
return [base_lr * ((self.last_epoch + 1) / self.warmup_step) \
|
|
for base_lr in self.base_lrs]
|
|
else:
|
|
return [self.min_lr + 0.5 * (base_lr - self.min_lr) * \
|
|
(1 + np.cos(np.pi * (self.last_epoch - self.warmup_step) / (self.max_step - self.warmup_step))) \
|
|
for base_lr in self.base_lrs]
|
|
|
|
|
|
def adjust_learning_rate(optimizer, iteration_count, lr, lr_decay):
|
|
"""Imitating the original implementation"""
|
|
lr = lr / (1.0 + lr_decay * iteration_count)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr
|
|
|
|
import torch.nn as nn
|
|
class EarlyStopping(nn.Module):
|
|
pass |