|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from models.networks.architecture import VGG19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
class GANLoss(nn.Module): |
|
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0, |
|
tensor=torch.FloatTensor, opt=None): |
|
super(GANLoss, self).__init__() |
|
self.real_label = target_real_label |
|
self.fake_label = target_fake_label |
|
self.real_label_tensor = None |
|
self.fake_label_tensor = None |
|
self.zero_tensor = None |
|
self.Tensor = tensor |
|
self.gan_mode = gan_mode |
|
self.opt = opt |
|
if gan_mode == 'ls': |
|
pass |
|
elif gan_mode == 'original': |
|
pass |
|
elif gan_mode == 'w': |
|
pass |
|
elif gan_mode == 'hinge': |
|
pass |
|
else: |
|
raise ValueError('Unexpected gan_mode {}'.format(gan_mode)) |
|
|
|
def get_target_tensor(self, input, target_is_real): |
|
if target_is_real: |
|
if self.real_label_tensor is None: |
|
self.real_label_tensor = self.Tensor(1).fill_(self.real_label) |
|
self.real_label_tensor.requires_grad_(False) |
|
return self.real_label_tensor.expand_as(input) |
|
else: |
|
if self.fake_label_tensor is None: |
|
self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label) |
|
self.fake_label_tensor.requires_grad_(False) |
|
return self.fake_label_tensor.expand_as(input) |
|
|
|
def get_zero_tensor(self, input): |
|
if self.zero_tensor is None: |
|
self.zero_tensor = self.Tensor(1).fill_(0) |
|
self.zero_tensor.requires_grad_(False) |
|
return self.zero_tensor.expand_as(input) |
|
|
|
def loss(self, input, target_is_real, for_discriminator=True): |
|
if self.gan_mode == 'original': |
|
target_tensor = self.get_target_tensor(input, target_is_real) |
|
loss = F.binary_cross_entropy_with_logits(input, target_tensor) |
|
return loss |
|
elif self.gan_mode == 'ls': |
|
target_tensor = self.get_target_tensor(input, target_is_real) |
|
return F.mse_loss(input, target_tensor) |
|
elif self.gan_mode == 'hinge': |
|
if for_discriminator: |
|
if target_is_real: |
|
minval = torch.min(input - 1, self.get_zero_tensor(input)) |
|
loss = -torch.mean(minval) |
|
else: |
|
minval = torch.min(-input - 1, self.get_zero_tensor(input)) |
|
loss = -torch.mean(minval) |
|
else: |
|
assert target_is_real, "The generator's hinge loss must be aiming for real" |
|
loss = -torch.mean(input) |
|
return loss |
|
else: |
|
|
|
if target_is_real: |
|
return -input.mean() |
|
else: |
|
return input.mean() |
|
|
|
def __call__(self, input, target_is_real, for_discriminator=True): |
|
|
|
|
|
if isinstance(input, list): |
|
loss = 0 |
|
for pred_i in input: |
|
if isinstance(pred_i, list): |
|
pred_i = pred_i[-1] |
|
loss_tensor = self.loss(pred_i, target_is_real, for_discriminator) |
|
bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0) |
|
new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1) |
|
loss += new_loss |
|
return loss / len(input) |
|
else: |
|
return self.loss(input, target_is_real, for_discriminator) |
|
|
|
|
|
|
|
class VGGLoss(nn.Module): |
|
def __init__(self, gpu_ids): |
|
super(VGGLoss, self).__init__() |
|
self.vgg = VGG19().cuda() |
|
self.criterion = nn.L1Loss() |
|
self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] |
|
|
|
def forward(self, x, y): |
|
x_vgg, y_vgg = self.vgg(x), self.vgg(y) |
|
loss = 0 |
|
for i in range(len(x_vgg)): |
|
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) |
|
return loss |
|
|
|
|
|
|
|
class KLDLoss(nn.Module): |
|
def forward(self, mu, logvar): |
|
return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) |
|
|