datnguyentien204's picture
Upload 1403 files
83034b6 verified
import argparse
import os
import torch
import torch.nn as nn
import torch.utils.data as data
from PIL import Image
from PIL import ImageFile
from tensorboardX import SummaryWriter
from torchvision import transforms
from tqdm import tqdm
from pathlib import Path
import StyTr2.models.transformer_decoder as transformer
from StyTr2.models.StyTR import StyTr
from StyTr2.sampler import InfiniteSamplerWrapper
from torchvision.utils import save_image
from StyTr2.models.transformerEncoder import TransformerEncoder
from StyTr2.models.schedule import CosineAnnealingWarmUpLR
from StyTr2.models.DecoderCNN import Decoder_MV, vgg_structures,decoder_stem # DecoderCNN
from StyTr2.models.transformer_decoder import TransformerDecoder # TransformerDecoder
def train_transform():
transform_list = [
transforms.Resize(size=(512, 512)),
transforms.RandomCrop(size=(224, 224)),
transforms.ToTensor()
]
return transforms.Compose(transform_list)
class FlatFolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FlatFolderDataset, self).__init__()
self.root = root
print(self.root)
self.path = os.listdir(self.root)
if os.path.isdir(os.path.join(self.root, self.path[0])):
self.paths = []
for file_name in os.listdir(self.root):
for file_name1 in os.listdir(os.path.join(self.root, file_name)):
self.paths.append(self.root + "/" + file_name + "/" + file_name1)
else:
self.paths = list(Path(self.root).glob('*'))
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(str(path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FlatFolderDataset'
def save_checkpoint(encoder, transModule, decoder, optimizer, scheduler, epoch,
log_c, log_s, log_id1, log_id2, log_all, loss_count_interval, save_path):
checkpoint = {
'encoder': encoder.state_dict() if not encoder is None else None,
'transModule': transModule.state_dict() if not transModule is None else None,
'decoder': decoder.state_dict() if not decoder is None else None,
'optimizer': optimizer.state_dict() if not optimizer is None else None,
'scheduler': scheduler.state_dict() if not scheduler is None else None,
'epoch': epoch if not epoch is None else None,
'log_c': log_c if not log_c is None else None,
'log_s': log_s if not log_s is None else None,
'log_id1': log_id1 if not log_id1 is None else None,
'log_id2': log_id2 if not log_id2 is None else None,
'log_all': log_all if not log_all is None else None,
'loss_count_interval': loss_count_interval if not loss_count_interval is None else None
}
torch.save(checkpoint, save_path)
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content_dir', default=r'E:\NLP\VAL_Transformers\models\StyTr2\images', type=str,
help='Directory path to a batch of content images')
parser.add_argument('--style_dir', default=r'E:\NLP\VAL_Transformers\models\StyTr2\style', type=str,
# wikiart dataset crawled from https://www.wikiart.org/
help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str,
default=r'/home/share/VAL_ImageTranslation/models/networks/StyTr2/experiments/vgg_normalised.pth') # run the train.py, please download the pretrained vgg checkpoint
# training options
parser.add_argument('--save_dir', default='./experiments',
help='Directory to save the model')
parser.add_argument('--log_dir', default='./logs',
help='Directory to save the log')
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--lr_decay', type=float, default=1e-4)
parser.add_argument('--max_iter', type=int, default=3000)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--style_weight', type=float, default=10.0)
parser.add_argument('--content_weight', type=float, default=7.0)
parser.add_argument('--n_threads', type=int, default=1)
parser.add_argument('--id1_weight', type=float, default=50)
parser.add_argument('--id2_weight', type=float, default=1)
parser.add_argument('--save_model_interval', type=int, default=3000)
parser.add_argument('--loss_count_interval', type=int, default=400)
args = parser.parse_args()
loss_count_interval = args.loss_count_interval
USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")
print(device)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
vgg = vgg_structures
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:44])
encoder=TransformerEncoder(img_size=224,patch_size=2,in_chans=3,embed_dim=192,depths=[2, 2, 2],nhead=[3, 6, 12],strip_width=[2, 4, 7],drop_path_rate=0.,patch_norm=True)
decoder=Decoder_MV(d_model=768,seq_input=True)
transformer_decoder=TransformerDecoder(nlayer=3,d_model=768,nhead=8,mlp_ratio=4,qkv_bias=False,attn_drop=0.,drop=0.,drop_path=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm,norm_first=True)
network=StyTr(encoder,decoder,transformer_decoder,vgg)
optimizer = torch.optim.Adam([
{'params': network.encoder.parameters()},
{'params': network.decoder.parameters()},
{'params': network.transModule.parameters()},
], lr=args.lr_decay)
scheduler = CosineAnnealingWarmUpLR(optimizer, warmup_step=args.max_iter//4, max_step=args.max_iter, min_lr=0)
log_c, log_s, log_id1, log_id2, log_all = [],[],[],[],[]
log_c_temp, log_s_temp, log_id1_temp, log_id2_temp, log_all_temp = [],[],[],[],[]
network.train()
network.to(device)
content_tf = train_transform()
style_tf = train_transform()
content_dataset = FlatFolderDataset(args.content_dir, content_tf)
style_dataset = FlatFolderDataset(args.style_dir, style_tf)
content_iter = iter(data.DataLoader(
content_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(content_dataset),
num_workers=args.n_threads))
style_iter = iter(data.DataLoader(
style_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(style_dataset),
num_workers=args.n_threads))
if not os.path.exists(args.save_dir + "/test"):
os.makedirs(args.save_dir + "/test")
for i in tqdm(range(args.max_iter)):
content_images = next(content_iter).to(device)
style_images = next(style_iter).to(device)
loss_c, loss_s, loss_id_1, loss_id_2, out = network(content_images, style_images)
loss_all = args.content_weight * loss_c + args.style_weight * loss_s + args.id1_weight * loss_id_1 + args.id2_weight * loss_id_2
print("loss_all",loss_all.sum().cpu().detach().numpy(),"==>loss_c",loss_c.sum().cpu().detach().numpy(),"==>loss_s",loss_s.sum().cpu().detach().numpy(),"==>loss_id_1",loss_id_1.sum().cpu().detach().numpy(),"==>loss_id_2",loss_id_2.sum().cpu().detach().numpy())
log_c_temp.append(loss_c.item())
log_s_temp.append(loss_s.item())
log_id1_temp.append(loss_id_1.item())
log_id2_temp.append(loss_id_2.item())
log_all_temp.append(loss_all.item())
# update parameters
optimizer.zero_grad()
loss_all.backward()
optimizer.step()
scheduler.step()
if i % 100 == 0:
output_name = '{:s}/test/{:s}{:s}'.format(
args.save_dir, str(i), ".jpg"
)
out = torch.cat((content_images, out), 0)
out = torch.cat((style_images, out), 0)
save_image(out, output_name)
if i % args.save_model_interval == 0:
save_checkpoint(
encoder=network.encoder,
transModule=network.transModule,
decoder=network.decoder,
optimizer=optimizer,
scheduler=scheduler,
epoch=i,
log_c=log_c,
log_s=log_s,
log_id1=log_id1,
log_id2=log_id2,
log_all=log_all,
loss_count_interval=loss_count_interval,
save_path=os.path.join(args.save_dir, 'checkpoint_{}_epoch.pkl'.format(i))
)