import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .ViT_helper import to_2tuple, to_ntuple,DropPath class Mlp(nn.Module): """MLP as implemented in timm """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features drops = to_2tuple(drop) self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.drop1 = nn.Dropout(drops[0]) self.fc2 = nn.Linear(hidden_features, out_features) self.drop2 = nn.Dropout(drops[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class Attention(nn.Module): """Self Attention as implemented in timm """ def __init__(self, d_model, nhead=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() assert d_model % nhead == 0, 'd_model needs to be divisible by nhead' self.nhead = nhead self.scale = (d_model // nhead) ** -0.5 self.to_qkv = nn.Linear(d_model, d_model * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(d_model, d_model) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.size() qkv = self.to_qkv(x).reshape(B, N, 3, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) attn = (q @ k.transpose(-1, -2)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Attention_Cross(nn.Module): """Attention for decoder layer.Some palce may be called "inter attention" """ def __init__(self, d_model, nhead=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() assert d_model % nhead == 0, 'd_model needs to be divisible by nhead' self.nhead = nhead self.scale = (d_model // nhead) ** -0.5 self.to_q = nn.Linear(d_model, d_model, bias=qkv_bias) self.to_kv = nn.Linear(d_model, d_model * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(d_model, d_model) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, y): """ Args: x: output of the former layer y: memery of the encoder layer """ B, Nx, C = x.size() _, Ny, _ = y.size() q = self.to_q(x).reshape(B, Nx, self.nhead, C // self.nhead).permute(0, 2, 1, 3) kv = self.to_kv(y).reshape(B, Ny, 2, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) attn = (q @ k.transpose(-1, -2)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, Nx, C) x = self.proj(x) x = self.proj_drop(x) return x def split_int(num): """Split an integer into 2 integers evenly Args: num (int): The input integer Returns: num_1 (int) num_2 (int) """ if num % 2 == 0: num_1 = num_2 = num // 2 else: num_1 = num // 2 num_2 = num_1 + 1 return num_1, num_2 def unpad2D(input, pad): """Crop the input tensor according to pad.(Inverse operation for padding) Args: input (Tensor): (B, C, H, W) pad (Tuple of int): (left, right, top, bottom) Returns: output (Tensor): (B, C, new_H, new_W) """ pad_W_left, pad_W_right, pad_H_top, pad_H_bottom = pad if pad_H_top == 0 and pad_H_bottom == 0 and not (pad_W_left == 0 and pad_W_right == 0): output = input[:, :, :, pad_W_left:-pad_W_right] elif pad_W_left == 0 and pad_W_right == 0 and not (pad_H_top == 0 and pad_H_bottom == 0): output = input[:, :, pad_H_top:-pad_H_bottom, :] elif pad_H_top == 0 and pad_H_bottom == 0 and pad_W_left == 0 and pad_W_right == 0: output = input else: output = input[:, :, pad_H_top:-pad_H_bottom, pad_W_left:-pad_W_right] return output def seq_padding(x, dividable_size, input_resolution, pad_mode='constant'): """Padding for sequential data Args: x (Tensor): (B, L, C) dividable_size (Tuple | int): dividable size input_resolution (Tuple): resolution of x Returns: x (Tensor): (B, new_L, C) output_resolution (Tuple): new resolution of x pad (Tuple of int): (left, right, top, bottom) """ H, W = input_resolution B, L, C = x.shape assert L == H * W, 'Input of wrong size.' dividable_size = to_2tuple(dividable_size) x = x.permute(0, 2, 1).reshape(B, C, H, W) rema_H, rema_W = H % dividable_size[0], W % dividable_size[1] pad_H, pad_W = dividable_size[0] - rema_H, dividable_size[1] - rema_W pad_H_top, pad_H_bottom = split_int(pad_H) if rema_H != 0 else (0, 0) pad_W_left, pad_W_right = split_int(pad_W) if rema_W != 0 else (0, 0) x = F.pad(x, (pad_W_left, pad_W_right, pad_H_top, pad_H_bottom), pad_mode, 0) padded_H, padded_W = x.shape[-2:] x = x.reshape(B, C, -1).permute(0, 2, 1) return x, (padded_H, padded_W), (pad_W_left, pad_W_right, pad_H_top, pad_H_bottom) # Example # x = torch.randn(1, 14, 768) # y = seq_padding(x, dividable_size=7, input_resolution=(2, 7)) # print(y[0].shape, y[1], y[2]) def seq_unpad(x, input_resolution, pad): """Unpadding for sequential data Args: x (Tensor): (B, L, C) input_resolution (Tuple): resolution of x pad (Tuple of int): (left, right, top, bottom) Returns: x (Tensor): (B, new_L, C) output_resolution (Tuple): new resolution of x """ padded_H, padded_W = input_resolution B, L, C = x.shape assert L == padded_H * padded_W, 'Input of wrong size.' x = x.permute(0, 2, 1).reshape(B, C, padded_H, padded_W) x = unpad2D(x, pad=pad) H, W = x.shape[-2:] x = x.reshape(B, C, -1).permute(0, 2, 1) return x, (H, W) def window_partition(x, window_size): """Slightly modified for arbitrary window_size & resolution combination Args: x: (B,H,W,C) window_size (tuple[int] | int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ window_size = to_2tuple(window_size) B, H, W, C = x.shape n_win_H = H // window_size[0] n_win_W = W // window_size[1] if not (H % window_size[0] == 0 and W % window_size[1] == 0): x = x[:, :n_win_H * window_size[0], :n_win_W * window_size[1], :] x = x.view(B, n_win_H, window_size[0], n_win_W, window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows def window_reverse(windows, window_size, H, W): """Slightly modified for arbitrary window_size & resolution combination Args: windows: (num_windows*B, window_size, window_size, C) window_size (tuple[int] | int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ window_size = to_2tuple(window_size) n_win_H = H // window_size[0] n_win_W = W // window_size[1] B = windows.shape[0] // (n_win_H * n_win_W) x = windows.view(B, n_win_H, n_win_W, window_size[0], window_size[1], -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, n_win_H * window_size[0], n_win_W * window_size[1], -1) return x # Example # H, W = 6, 6 # window_size = 2 # x = torch.randn(1, H, W, 3) # win = window_partition(x, window_size=window_size) # y = window_reverse(win, window_size=window_size, H=H, W=W) # print(x.shape) # print(win.shape) # print(y.shape) # print(x[0].permute(2,0,1)[0]) # print(y[0].permute(2,0,1)[0]) def seq_crop(x, dividable_size, input_resolution): """ Arg: x (Tensor): (B, L, C) dividable_size (Tuple | int): dividable size input_resolution (Tuple): resolution of x Returns: x (Tensor): (B, new_L, C) output_resolution (Tuple): new resolution of x """ H, W = input_resolution B, L, C = x.shape assert L == H * W, 'Input of wrong size.' dividable_size = to_2tuple(dividable_size) x = x.reshape(B, H, W, C) rema_H, rema_W = H % dividable_size[0], W % dividable_size[1] new_H, new_W = H - rema_H, W - rema_W if rema_H != 0 or rema_W != 0: x = x[:, :new_H, :new_W, :] x = x.reshape(B, -1, C) return x, (new_H, new_W) # Example # H, W = 22, 34 # x = torch.randn(2, H*W, 96) # x, new_size = seq_crop(x, dividable_size=7, input_resolution=(H, W)) # print(x.shape, new_size) class PatchEmbed_Kai(nn.Module): """ 2D Image to Patch Embedding """ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, flatten=True): super().__init__() patch_size = to_2tuple(patch_size) self.in_chans = in_chans self.flatten = flatten self.proj = nn.Conv2d(self.in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): B, C, H, W = x.shape assert C == self.in_chans, 'Input image need to have same numbers of channels with the initialed.' x = self.proj(x) H, W = x.shape[2], x.shape[3] if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x, (H, W) # Example # model = PatchEmbed_Kai(patch_size=4, in_chans=3, embed_dim=96) # x = torch.randn(1, 3, 224, 224) # y = model(x) # torch.save(model.state_dict(), "./PatchEmbed.pkl") # print(y[0].shape, y[1]) class PatchMerging_Kai(nn.Module): """ Patch Merging Layer. Args: input_resolution (tuple[int] | int): Resolution of input feature. d_model (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, d_model, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = to_2tuple(input_resolution) self.d_model = d_model self.reduction = nn.Linear(4 * d_model, 2 * d_model, bias=False) self.norm = norm_layer(4 * d_model) def forward(self, x): """ Args: x (Tuple): (Tensor, arbitrary_input, (H,W)), arbitrary_input (bool) if arbitrary_input=False, (H,W) will not be required B, H*W, C -> B, H/2*W/2, 4*C """ arbitrary_input = x[1] if arbitrary_input: H, W = x[2] else: H, W = self.input_resolution x = x[0] B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) if H % 2 != 0: x = x[:, 0:-1, :, :] if W % 2 != 0: x = x[:, :, 0:-1, :] x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C H, W = x.shape[1], x.shape[2] x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x, arbitrary_input, (H, W) # Example # model = PatchMerging_Kai(input_resolution=(5,4), d_model=3) # arbitrary_input = True # # x = torch.randn(1, 20, 3) # # y = model((x, arbitrary_input)) # x = torch.randn(1, 45, 3) # y = model((x, arbitrary_input, (5,9))) # print(y[0].shape, y[2]) class WindowAttention_Kai(nn.Module): def __init__(self, d_model, window_size, nhead, qkv_bias=True, attn_drop=0., proj_drop=0.): super().__init__() assert d_model % nhead == 0, 'd_model needs to be divisible by nhead' self.window_size = to_2tuple(window_size) self.nhead = nhead self.scale = (d_model // nhead) ** -0.5 # Relative Position Bias's parameter Table self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), nhead) ) # Compute indice of relative_position_bias_table for attention matrix coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(d_model, d_model * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(d_model, d_model) self.proj_drop = nn.Dropout(proj_drop) nn.init.trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self, x, shape): H, W = shape Bi, Ni, Ci = x.size() assert Ni == H * W, "Inputs with wrong size." x = x.reshape(Bi, H, W, Ci) # print(self.window_size) x = window_partition(x, self.window_size) x = x.reshape(-1, self.window_size[0] * self.window_size[1], Ci) B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) attn = (q @ k.transpose(-2, -1)) * self.scale relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], self.nhead) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attn = attn + relative_position_bias.unsqueeze(0) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) x = window_reverse(x, self.window_size, H, W) x = x.reshape(Bi, Ni, Ci) return x # Example # model = WindowAttention_Kai( # d_model=768, # window_size=7, # nhead=8 # ) # x = torch.randn(1, 784, 768) # y = model(x, shape=(28, 28)) # print(y.shape) class StripAttention(nn.Module): def __init__(self, d_model, nhead=8, strip_width=7, is_vertical=False, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.d_model = d_model self.strip_width = strip_width self.is_vertical = is_vertical self.attn = Attention( d_model=d_model, nhead=nhead, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) def forward(self, x, shape): H, W = shape B, N, C = x.size() assert N == H * W, "Inputs with wrong size." x = x.reshape(B, H, W, C) # print(self.strip_width) if self.is_vertical: x = window_partition(x, (H, self.strip_width)) x = x.reshape(-1, H * self.strip_width, C) else: x = window_partition(x, (self.strip_width, W)) x = x.reshape(-1, W * self.strip_width, C) wins = self.attn(x) if self.is_vertical: x = window_reverse(wins, (H, self.strip_width), H, W) else: x = window_reverse(wins, (self.strip_width, W), H, W) x = x.reshape(B, N, C) return x # Example # model = StripAttention( # d_model=768, # nhead=8, # strip_width=7, # is_vertical=False # ) # x = torch.randn(1, 784, 768) # y = model(x, (28, 28)) # print(y.shape) class StripAttentionBlock(nn.Module): def __init__(self, d_model, input_resolution, nhead=8, strip_width=7, mlp_ratio=4, qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.d_model = d_model self.input_resolution = to_2tuple(input_resolution) self.strip_width = strip_width self.norm1 = norm_layer(d_model) self.attn1 = StripAttention( d_model=d_model, nhead=nhead, strip_width=strip_width, is_vertical=False, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop ) self.attn2 = StripAttention( d_model=d_model, nhead=nhead, strip_width=strip_width, is_vertical=True, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop ) self.attn3 = WindowAttention_Kai( d_model=d_model, window_size=(strip_width * 2, strip_width * 2), nhead=nhead, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(d_model) mlp_hidden_dim = int(d_model * mlp_ratio) self.mlp = Mlp(d_model, hidden_features=mlp_hidden_dim, out_features=d_model, act_layer=act_layer, drop=drop) def forward(self, x): arbitrary_input = x[1] if arbitrary_input: H, W = x[2] # x, (H, W) = seq_crop(x[0], dividable_size=self.strip_width*2, input_resolution=(H, W)) x, (H, W), pad = seq_padding(x[0], dividable_size=self.strip_width * 2, input_resolution=(H, W), pad_mode='constant') else: H, W = self.input_resolution x = x[0] B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x1 = self.attn1(x, shape=(H, W)) x2 = self.attn2(x, shape=(H, W)) x3 = self.attn3(x, shape=(H, W)) # Method 1 # x = x1 + x2 + x3 # Method 2 q_x = x.unsqueeze(dim=2) k_x = torch.stack([x, x1, x2, x3], dim=2) attn_x = (q_x @ k_x.transpose(-1, -2)).softmax(dim=-1) x = attn_x @ k_x x = x.squeeze(dim=2) x = shortcut + self.drop_path(x) # FFN x = x + self.drop_path(self.mlp(self.norm2(x))) if arbitrary_input: x, (H, W) = seq_unpad(x, (H, W), pad) return (x, arbitrary_input, (H, W)) # Example # model = StripAttentionBlock( # d_model=96, # input_resolution=28, # nhead=8, # strip_width=7 # ) # arbitrary_input = True # # x = (torch.randn(1, 784, 96), arbitrary_input, (28,28)) # # y = model(x) # x = (torch.randn(1, 840, 96), arbitrary_input, (28, 30)) # y = model(x) # print(y[0].shape, y[2]) class BasicLayer_SA(nn.Module): def __init__(self, d_model, input_resolution, depth, nhead, strip_width, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.d_model = d_model self.input_resolution = to_2tuple(input_resolution) self.depth = depth self.strip_width = list(to_ntuple(self.depth)(strip_width)) self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ StripAttentionBlock( d_model=d_model, input_resolution=self.input_resolution, nhead=nhead, strip_width=self.strip_width[i], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer ) for i in range(self.depth) ]) # patch merging layer if downsample is not None: self.downsample = downsample(self.input_resolution, d_model=d_model, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) # print(x[0].shape, x[1], x[2]) if self.downsample is not None: x = self.downsample(x) return x # Example # model = BasicLayer_SA( # d_model=768, # input_resolution=112, # depth=3, # nhead=8, # strip_width=[7, 2, 7], # drop_path=0., # downsample=PatchMerging_Kai, # use_checkpoint=False # ) # arbitrary_input = True # # x = (torch.randn(1, 12544, 768), arbitrary_input, (112,112)) # # y = model(x) # x = (torch.randn(1, 810, 768), arbitrary_input, (27,30)) # y = model(x) # print(y[0].shape, y[2]) ########################################## S2WAT ########################################## class HeTransformerEncoder(nn.Module): def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], nhead=[3, 6, 12, 24], strip_width=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False): super().__init__() self.img_size = to_2tuple(img_size) self.patch_size = to_2tuple(patch_size) self.num_layers = len(depths) self.strip_width = list(to_ntuple(self.num_layers)(strip_width)) self.embed_dim = embed_dim self.ape = ape self.printed_modes = set() self.patch_norm = patch_norm self.device="cuda" if torch.cuda.is_available() else "cpu" # split image into non-overlapping patches self.patch_embed = PatchEmbed_Kai( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None ) self.patches_resolution = (self.img_size[0] // self.patch_size[0], self.img_size[1] // self.patch_size[1]) self.num_patches = self.patches_resolution[0] * self.patches_resolution[1] # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim)) nn.init.trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i in range(self.num_layers): layer = BasicLayer_SA( d_model=int(self.embed_dim * 2 ** i), input_resolution=(self.patches_resolution[0] // (2 ** i), self.patches_resolution[1] // (2 ** i)), depth=depths[i], nhead=nhead[i], strip_width=self.strip_width[i], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])], norm_layer=norm_layer, downsample=PatchMerging_Kai if (i < self.num_layers - 1) else None, use_checkpoint=use_checkpoint ) self.layers.append(layer) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def add_z(self, x, alpha, mode): if mode not in self.printed_modes: if mode == 1: print("Using Hadamard Product => Element-wise multiplication") elif mode == 2: print("Using Addition") elif mode == 3: print("Joint Embedding (concatenation along a new dimension)") else: raise ValueError("Invalid mode. Please choose 1, 2, or 3") self.printed_modes.add(mode) size = x[0].size() alpha_exp = alpha.expand(size) if mode == 1: x_concat_alpha = x[0].to(self.device) * alpha_exp.to(self.device) elif mode == 2: x_concat_alpha = x[0].to(self.device) + alpha_exp.to(self.device) elif mode == 3: x_concat_alpha = torch.cat((x[0].to(self.device), alpha_exp.to(self.device))) else: raise ValueError("Invalid mode. Please choose 1, 2, or 3") return x_concat_alpha.to(self.device) def forward_features(self, x,alpha,mode): x, arbitrary_input = x[0], x[1] x, (H, W) = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) x = (x, arbitrary_input, (H, W)) for layer in self.layers: x = layer(x) x = (self.add_z(x, alpha, mode), x[1], x[2]) return x def forward(self, x,arbitrary_input=False,alpha=None,mode=2): if arbitrary_input: H, W = x.shape[2], x.shape[3] x = (x, arbitrary_input, (H, W)) else: x = (x, arbitrary_input) x = self.forward_features(x,alpha,mode) return x