import numpy as np import torch from torch.utils import data def InfiniteSampler(n): # i = 0 i = n - 1 order = np.random.permutation(n) while True: yield order[i] i += 1 if i >= n: np.random.seed() order = np.random.permutation(n) i = 0 class InfiniteSamplerWrapper(data.sampler.Sampler): def __init__(self, data_source): self.num_samples = len(data_source) def __iter__(self): return iter(InfiniteSampler(self.num_samples)) def __len__(self): return 2 ** 31 def save_checkpoint(encoder1,encoder2, transModule, decoder, optimizer, scheduler, epoch, log_c, log_s, log_id1, log_id2, log_all, loss_count_interval, save_path): checkpoint = { 'encoder1': encoder1.state_dict() if not encoder1 is None else None, 'encoder2': encoder2.state_dict() if not encoder2 is None else None, 'transModule': transModule.state_dict() if not transModule is None else None, 'decoder': decoder.state_dict() if not decoder is None else None, 'optimizer': optimizer.state_dict() if not optimizer is None else None, 'scheduler': scheduler.state_dict() if not scheduler is None else None, 'epoch': epoch if not epoch is None else None, 'log_c': log_c if not log_c is None else None, 'log_s': log_s if not log_s is None else None, 'log_id1': log_id1 if not log_id1 is None else None, 'log_id2': log_id2 if not log_id2 is None else None, 'log_all': log_all if not log_all is None else None, 'loss_count_interval': loss_count_interval if not loss_count_interval is None else None } torch.save(checkpoint, save_path)