# import torch.utils.data as data # from PIL import Image # import torchvision.transforms as transforms # import numpy as np # import random # # # class BaseDataset(data.Dataset): # def __init__(self): # super(BaseDataset, self).__init__() # # @staticmethod # def modify_commandline_options(parser, is_train): # parser.add_argument('--random_crop', default=False, # help='Randomize Crop Images') # return parser # # def initialize(self, opt): # pass # # # def get_params(opt, size): # w, h = size # new_h = h # new_w = w # if opt.preprocess_mode == 'resize_and_crop': # new_h = new_w = opt.load_size # elif opt.preprocess_mode == 'scale_width_and_crop': # new_w = opt.load_size # new_h = opt.load_size * h // w # elif opt.preprocess_mode == 'scale_shortside_and_crop': # ss, ls = min(w, h), max(w, h) # shortside and longside # width_is_shorter = w == ss # ls = int(opt.load_size * ls / ss) # new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss) # # x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) # y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) # # flip = random.random() > 0.5 # return {'crop_pos': (x, y), 'flip': flip} # # # def get_transform(opt, params, method=Image.BICUBIC, normalize=True, toTensor=True): # transform_list = [] # if 'resize' in opt.preprocess_mode: # osize = [opt.load_size, opt.load_size] # transform_list.append(transforms.Resize(osize, interpolation=method)) # elif 'scale_width' in opt.preprocess_mode: # transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method))) # elif 'scale_shortside' in opt.preprocess_mode: # transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, method))) # # if 'crop' in opt.preprocess_mode: # transform_list.append(transforms.RandomCrop(opt.crop_size)) # # if opt.preprocess_mode == 'none': # base = 32 # transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) # # if opt.preprocess_mode == 'fixed': # w = opt.crop_size # h = round(opt.crop_size / opt.aspect_ratio) # transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method))) # # if opt.isTrain and not opt.no_flip: # transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) # # if toTensor: # transform_list += [transforms.ToTensor()] # # if normalize: # transform_list += [transforms.Normalize((0.5, 0.5, 0.5), # (0.5, 0.5, 0.5))] # # return transforms.Compose(transform_list) # # # def normalize(): # return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # # # def __resize(img, w, h, method=Image.BICUBIC): # return img.resize((w, h), method) # # # def __make_power_2(img, base, method=Image.BICUBIC): # ow, oh = img.size # h = int(round(oh / base) * base) # w = int(round(ow / base) * base) # if (h == oh) and (w == ow): # return img # return img.resize((w, h), method) # # # def __scale_width(img, target_width, method=Image.BICUBIC): # ow, oh = img.size # if (ow == target_width): # return img # w = target_width # h = int(target_width * oh / ow) # return img.resize((w, h), method) # # # def __scale_shortside(img, target_width, method=Image.BICUBIC): # ow, oh = img.size # ss, ls = min(ow, oh), max(ow, oh) # shortside and longside # width_is_shorter = ow == ss # if (ss == target_width): # return img # ls = int(target_width * ls / ss) # nw, nh = (ss, ls) if width_is_shorter else (ls, ss) # return img.resize((nw, nh), method) # # # def __crop(img, pos, size): # ow, oh = img.size # x1, y1 = pos # tw = th = size # return img.crop((x1, y1, x1 + tw, y1 + th)) # # # def __flip(img, flip): # if flip: # return img.transpose(Image.FLIP_LEFT_RIGHT) # return img import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms import numpy as np import random class BaseDataset(data.Dataset): def __init__(self): super(BaseDataset, self).__init__() @staticmethod def modify_commandline_options(parser, is_train): return parser def initialize(self, opt): pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.preprocess_mode == 'resize_and_crop': new_h = new_w = opt.load_size elif opt.preprocess_mode == 'scale_width_and_crop': new_w = opt.load_size new_h = opt.load_size * h // w elif opt.preprocess_mode == 'scale_shortside_and_crop': ss, ls = min(w, h), max(w, h) # shortside and longside width_is_shorter = w == ss ls = int(opt.load_size * ls / ss) new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss) x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) flip = random.random() > 0.5 return {'crop_pos': (x, y), 'flip': flip} def get_transform(opt, params, method=Image.BICUBIC, normalize=True, toTensor=True): transform_list = [] if 'resize' in opt.preprocess_mode: osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, interpolation=method)) elif 'scale_width' in opt.preprocess_mode: transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method))) elif 'scale_shortside' in opt.preprocess_mode: transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, method))) if 'crop' in opt.preprocess_mode: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) if opt.preprocess_mode == 'none': base = 32 transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) if opt.preprocess_mode == 'fixed': w = opt.crop_size h = round(opt.crop_size / opt.aspect_ratio) transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method))) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) if toTensor: transform_list += [transforms.ToTensor()] if normalize: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def normalize(): return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) def __resize(img, w, h, method=Image.BICUBIC): return img.resize((w, h), method) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if (h == oh) and (w == ow): return img return img.resize((w, h), method) def __scale_width(img, target_width, method=Image.BICUBIC): ow, oh = img.size if (ow == target_width): return img w = target_width h = int(target_width * oh / ow) return img.resize((w, h), method) def __scale_shortside(img, target_width, method=Image.BICUBIC): ow, oh = img.size ss, ls = min(ow, oh), max(ow, oh) # shortside and longside width_is_shorter = ow == ss if (ss == target_width): return img ls = int(target_width * ls / ss) nw, nh = (ss, ls) if width_is_shorter else (ls, ss) return img.resize((nw, nh), method) def __crop(img, pos, size): ow, oh = img.size x1, y1 = pos tw = th = size return img.crop((x1, y1, x1 + tw, y1 + th)) def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img