import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torch.nn.utils.spectral_norm as spectral_norm from models.networks.normalization import FADE from models.networks.sync_batchnorm import SynchronizedBatchNorm2d # ResNet block that uses FADE. # It differs from the ResNet block of SPADE in that # it takes in the feature map as input, learns the skip connection if necessary. # This architecture seemed like a standard architecture for unconditional or # class-conditional GAN architecture using residual block. # The code was inspired from https://github.com/LMescheder/GAN_stability # and https://github.com/NVlabs/SPADE. class FADEResnetBlock(nn.Module): def __init__(self, fin, fout, opt): super().__init__() # attributes self.learned_shortcut = (fin != fout) fmiddle = fin # create conv layers self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1) self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1) if self.learned_shortcut: self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) # apply spectral norm if specified if 'spectral' in opt.norm_G: self.conv_0 = spectral_norm(self.conv_0) self.conv_1 = spectral_norm(self.conv_1) if self.learned_shortcut: self.conv_s = spectral_norm(self.conv_s) # define normalization layers fade_config_str = opt.norm_G.replace('spectral', '') self.norm_0 = FADE(fade_config_str, fin, fin) self.norm_1 = FADE(fade_config_str, fmiddle, fmiddle) if self.learned_shortcut: self.norm_s = FADE(fade_config_str, fin, fin) # Note the resnet block with FADE also takes in |feat|, # the feature map as input def forward(self, x, feat): x_s = self.shortcut(x, feat) dx = self.conv_0(self.actvn(self.norm_0(x, feat))) dx = self.conv_1(self.actvn(self.norm_1(dx, feat))) out = x_s + dx return out def shortcut(self, x, feat): if self.learned_shortcut: x_s = self.conv_s(self.norm_s(x, feat)) else: x_s = x return x_s def actvn(self, x): return F.leaky_relu(x, 2e-1) class StreamResnetBlock(nn.Module): def __init__(self, fin, fout, opt): super().__init__() # attributes self.learned_shortcut = (fin != fout) fmiddle = fin # create conv layers self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1) self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1) if self.learned_shortcut: self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) # apply spectral norm if specified if 'spectral' in opt.norm_S: self.conv_0 = spectral_norm(self.conv_0) self.conv_1 = spectral_norm(self.conv_1) if self.learned_shortcut: self.conv_s = spectral_norm(self.conv_s) # define normalization layers subnorm_type = opt.norm_S.replace('spectral', '') if subnorm_type == 'batch': self.norm_layer_in = nn.BatchNorm2d(fin, affine=True) self.norm_layer_out= nn.BatchNorm2d(fout, affine=True) if self.learned_shortcut: self.norm_layer_s = nn.BatchNorm2d(fout, affine=True) elif subnorm_type == 'syncbatch': self.norm_layer_in = SynchronizedBatchNorm2d(fin, affine=True) self.norm_layer_out= SynchronizedBatchNorm2d(fout, affine=True) if self.learned_shortcut: self.norm_layer_s = SynchronizedBatchNorm2d(fout, affine=True) elif subnorm_type == 'instance': self.norm_layer_in = nn.InstanceNorm2d(fin, affine=False) self.norm_layer_out= nn.InstanceNorm2d(fout, affine=False) if self.learned_shortcut: self.norm_layer_s = nn.InstanceNorm2d(fout, affine=False) else: raise ValueError('normalization layer %s is not recognized' % subnorm_type) def forward(self, x): x_s = self.shortcut(x) dx = self.actvn(self.norm_layer_in(self.conv_0(x))) dx = self.actvn(self.norm_layer_out(self.conv_1(dx))) out = x_s + dx return out def shortcut(self,x): if self.learned_shortcut: x_s = self.actvn(self.norm_layer_s(self.conv_s(x))) else: x_s = x return x_s def actvn(self, x): return F.leaky_relu(x, 2e-1) # ResNet block used in pix2pixHD # We keep the same architecture as pix2pixHD. class ResnetBlock(nn.Module): def __init__(self, dim, norm_layer, activation=nn.ReLU(False), kernel_size=3): super().__init__() pw = (kernel_size - 1) // 2 self.conv_block = nn.Sequential( nn.ReflectionPad2d(pw), norm_layer(nn.Conv2d(dim, dim, kernel_size=kernel_size)), activation, nn.ReflectionPad2d(pw), norm_layer(nn.Conv2d(dim, dim, kernel_size=kernel_size)) ) def forward(self, x): y = self.conv_block(x) out = x + y return out # VGG architecture, used for the perceptual loss using a pretrained VGG network class VGG19(torch.nn.Module): def __init__(self, requires_grad=False): super().__init__() vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out