import torch.nn as nn import numpy as np import torch.nn.functional as F from models.networks.base_network import BaseNetwork from models.networks.normalization import get_norm_layer import util.util as util class MultiscaleDiscriminator(BaseNetwork): @staticmethod def modify_commandline_options(parser, is_train): parser.add_argument('--netD_subarch', type=str, default='n_layer', help='architecture of each discriminator') parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to be used in multiscale') opt, _ = parser.parse_known_args() # define properties of each discriminator of the multiscale discriminator subnetD = util.find_class_in_module(opt.netD_subarch + 'discriminator', 'models.networks.discriminator') subnetD.modify_commandline_options(parser, is_train) return parser def __init__(self, opt): super().__init__() self.opt = opt for i in range(opt.num_D): subnetD = self.create_single_discriminator(opt) self.add_module('discriminator_%d' % i, subnetD) def create_single_discriminator(self, opt): subarch = opt.netD_subarch if subarch == 'n_layer': netD = NLayerDiscriminator(opt) else: raise ValueError('unrecognized discriminator subarchitecture %s' % subarch) return netD def downsample(self, input): return F.avg_pool2d(input, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False) # Returns list of lists of discriminator outputs. # The final result is of size opt.num_D x opt.n_layers_D def forward(self, input): result = [] get_intermediate_features = not self.opt.no_ganFeat_loss for name, D in self.named_children(): out = D(input) if not get_intermediate_features: out = [out] result.append(out) input = self.downsample(input) return result # Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(BaseNetwork): @staticmethod def modify_commandline_options(parser, is_train): parser.add_argument('--n_layers_D', type=int, default=4, help='# layers in each discriminator') return parser def __init__(self, opt): super().__init__() if opt.task != 'SIS': opt.n_layers_D = 3 self.opt = opt kw = 4 padw = int(np.ceil((kw - 1.0) / 2)) nf = opt.ndf input_nc = self.compute_D_input_nc(opt) norm_layer = get_norm_layer(opt, opt.norm_D) sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, False)]] for n in range(1, opt.n_layers_D): nf_prev = nf nf = min(nf * 2, 512) stride = 1 if n == 3 else 2 sequence += [[norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=stride, padding=padw)), nn.LeakyReLU(0.2, False) ]] sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] # We divide the layers into groups to extract intermediate layer outputs for n in range(len(sequence)): self.add_module('model' + str(n), nn.Sequential(*sequence[n])) def compute_D_input_nc(self, opt): input_nc = opt.output_nc if opt.task == 'SIS': input_nc += opt.label_nc if opt.contain_dontcare_label: input_nc += 1 if not opt.no_instance: input_nc += 1 return input_nc def forward(self, input): results = [input] for submodel in self.children(): intermediate_output = submodel(results[-1]) results.append(intermediate_output) get_intermediate_features = not self.opt.no_ganFeat_loss if get_intermediate_features: return results[1:] else: return results[-1]