import torch.nn as nn import numpy as np import torch.nn.functional as F from models.networks.base_network import BaseNetwork from models.networks.normalization import get_norm_layer class ConvEncoder(BaseNetwork): """ Same architecture as the image discriminator """ def __init__(self, opt): super().__init__() self.opt = opt kw = 3 pw = int(np.ceil((kw - 1.0) / 2)) ndf = opt.ngf norm_layer = get_norm_layer(opt, opt.norm_E) self.layer1 = norm_layer(nn.Conv2d(3, ndf, kw, stride=2, padding=pw)) self.layer2 = norm_layer(nn.Conv2d(ndf * 1, ndf * 2, kw, stride=2, padding=pw)) self.layer3 = norm_layer(nn.Conv2d(ndf * 2, ndf * 4, kw, stride=2, padding=pw)) self.layer4 = norm_layer(nn.Conv2d(ndf * 4, ndf * 8, kw, stride=2, padding=pw)) self.layer5 = norm_layer(nn.Conv2d(ndf * 8, ndf * 8, kw, stride=2, padding=pw)) if opt.crop_size >= 256: self.layer6 = norm_layer(nn.Conv2d(ndf * 8, ndf * 8, kw, stride=2, padding=pw)) self.so = s0 = 4 self.fc_mu = nn.Linear(ndf * 8 * s0 * s0, 256) self.fc_var = nn.Linear(ndf * 8 * s0 * s0, 256) self.actvn = nn.LeakyReLU(0.2, False) def forward(self, x): if x.size(2) != 256 or x.size(3) != 256: x = F.interpolate(x, size=(256, 256), mode='bilinear') x = self.layer1(x) x = self.layer2(self.actvn(x)) x = self.layer3(self.actvn(x)) x = self.layer4(self.actvn(x)) x = self.layer5(self.actvn(x)) if self.opt.crop_size >= 256: x = self.layer6(self.actvn(x)) x = self.actvn(x) x = x.view(x.size(0), -1) mu = self.fc_mu(x) logvar = self.fc_var(x) return mu, logvar