import torch import torch.nn as nn import torch.nn.functional as F from models.networks.architecture import VGG19 # Defines the GAN loss which uses either LSGAN or the regular GAN. # When LSGAN is used, it is basically same as MSELoss, # but it abstracts away the need to create the target label tensor # that has the same size as the input class GANLoss(nn.Module): def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor, opt=None): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_tensor = None self.fake_label_tensor = None self.zero_tensor = None self.Tensor = tensor self.gan_mode = gan_mode self.opt = opt if gan_mode == 'ls': pass elif gan_mode == 'original': pass elif gan_mode == 'w': pass elif gan_mode == 'hinge': pass else: raise ValueError('Unexpected gan_mode {}'.format(gan_mode)) def get_target_tensor(self, input, target_is_real): if target_is_real: if self.real_label_tensor is None: self.real_label_tensor = self.Tensor(1).fill_(self.real_label) self.real_label_tensor.requires_grad_(False) return self.real_label_tensor.expand_as(input) else: if self.fake_label_tensor is None: self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label) self.fake_label_tensor.requires_grad_(False) return self.fake_label_tensor.expand_as(input) def get_zero_tensor(self, input): if self.zero_tensor is None: self.zero_tensor = self.Tensor(1).fill_(0) self.zero_tensor.requires_grad_(False) return self.zero_tensor.expand_as(input) def loss(self, input, target_is_real, for_discriminator=True): if self.gan_mode == 'original': # cross entropy loss target_tensor = self.get_target_tensor(input, target_is_real) loss = F.binary_cross_entropy_with_logits(input, target_tensor) return loss elif self.gan_mode == 'ls': target_tensor = self.get_target_tensor(input, target_is_real) return F.mse_loss(input, target_tensor) elif self.gan_mode == 'hinge': if for_discriminator: if target_is_real: minval = torch.min(input - 1, self.get_zero_tensor(input)) loss = -torch.mean(minval) else: minval = torch.min(-input - 1, self.get_zero_tensor(input)) loss = -torch.mean(minval) else: assert target_is_real, "The generator's hinge loss must be aiming for real" loss = -torch.mean(input) return loss else: # wgan if target_is_real: return -input.mean() else: return input.mean() def __call__(self, input, target_is_real, for_discriminator=True): # computing loss is a bit complicated because |input| may not be # a tensor, but list of tensors in case of multiscale discriminator if isinstance(input, list): loss = 0 for pred_i in input: if isinstance(pred_i, list): pred_i = pred_i[-1] loss_tensor = self.loss(pred_i, target_is_real, for_discriminator) bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0) new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1) loss += new_loss return loss / len(input) else: return self.loss(input, target_is_real, for_discriminator) # Perceptual loss that uses a pretrained VGG network class VGGLoss(nn.Module): def __init__(self, gpu_ids): super(VGGLoss, self).__init__() self.vgg = VGG19().cuda() self.criterion = nn.L1Loss() self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] def forward(self, x, y): x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss # KL Divergence loss used in VAE with an image encoder class KLDLoss(nn.Module): def forward(self, mu, logvar): return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())