import torch.nn.functional as F from models.networks.base_network import BaseNetwork from models.networks.architecture import StreamResnetBlock as StreamResnetBlock # Content/style stream. # The two streams are symmetrical with the same network structure, # aiming at extracting corresponding feature representations in different levels. class Stream(BaseNetwork): def __init__(self, opt): super().__init__() self.opt = opt nf = opt.ngf self.res_0 = StreamResnetBlock(opt.semantic_nc, 1 * nf, opt) # 64-ch feature self.res_1 = StreamResnetBlock(1 * nf, 2 * nf, opt) # 128-ch feature self.res_2 = StreamResnetBlock(2 * nf, 4 * nf, opt) # 256-ch feature self.res_3 = StreamResnetBlock(4 * nf, 8 * nf, opt) # 512-ch feature self.res_4 = StreamResnetBlock(8 * nf, 16 * nf, opt) # 1024-ch feature self.res_5 = StreamResnetBlock(16 * nf, 16 * nf, opt) # 1024-ch feature self.res_6 = StreamResnetBlock(16 * nf, 16 * nf, opt) # 1024-ch feature self.res_7 = StreamResnetBlock(16 * nf, 16 * nf, opt) # 1024-ch feature def down(self, input): return F.interpolate(input, scale_factor=0.5) def forward(self,input): # assume that input shape is (n,c,256,512) x0 = self.res_0(input) # (n,64,256,512) x1 = self.down(x0) x1 = self.res_1(x1) # (n,128,128,256) x2 = self.down(x1) x2 = self.res_2(x2) # (n,256,64,128) x3 = self.down(x2) x3 = self.res_3(x3) # (n,512,32,64) x4 = self.down(x3) x4 = self.res_4(x4) # (n,1024,16,32) x5 = self.down(x4) x5 = self.res_5(x5) # (n,1024,8,16) x6 = self.down(x5) x6 = self.res_6(x6) # (n,1024,4,8) x7 = self.down(x6) x7 = self.res_7(x7) # (n,1024,2,4) return [x0, x1, x2, x3, x4, x5, x6, x7]