from concurrent.futures import process import os from collections import OrderedDict # from tkinter import Image import torch import torchvision import ntpath import data from options.test_options import TestOptions from models.pix2pix_model import Pix2PixModel from util.util import mkdir from util.visualizer import Visualizer from util import html from tqdm import tqdm import numpy as np opt = TestOptions().parse() dataloader = data.create_dataloader(opt) model = Pix2PixModel(opt) if opt.task != 'MMIS' and opt.dataset_mode != 'photo2art': model.eval() visualizer = Visualizer(opt) web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # test print('Number of images: ', len(dataloader)) alpha_list = torch.linspace(0, 1.0, 20) #generate 20 images for each input image stack = False samples = len(dataloader) processed = -1 for i, data_i in enumerate(tqdm(dataloader)): processed += 1 if processed > samples: break alpha_imgs = [] for j, alpha in enumerate(alpha_list): opt.alpha = alpha generated = model(data_i, mode='inference',iters=0,progress=None,epochs=None,images_iters=None) #self, data, mode,iters,progress,epochs,images_iters img_path = data_i['cpath'] if j == 0: alpha_imgs.append(data_i['image']) alpha_imgs.append(data_i['label']) alpha_imgs.append(generated) if stack: image_dir = webpage.get_image_dir() short_path = ntpath.basename(img_path[0]) name = os.path.splitext(short_path)[0] image_name = '%s.png' % name os.makedirs(image_dir, exist_ok=True) save_path = os.path.join(image_dir, image_name) alpha_stack = torch.cat(alpha_imgs, dim=0) im_grid = torchvision.utils.make_grid(alpha_stack, nrow=len(alpha_imgs) + 2, padding=0, normalize=True) torchvision.utils.save_image(im_grid, save_path) else: for b in range(generated.shape[0]): # print(i, 'process image... %s' % img_path[b]) if opt.show_input: if opt.task == 'SIS': visuals = OrderedDict([('input_label', data_i['label'][b]), ('real_image', data_i['image'][b]), ('synthesized_image', generated[b])]) else: visuals = OrderedDict([('content', data_i['label'][b]), ('style', data_i['image'][b]), ('synthesized_image', generated[b])]) else: visuals = OrderedDict([('synthesized_image', generated[b])]) visualizer.save_images(webpage, visuals, img_path[b:b + 1], alpha=opt.alpha) webpage.save()