import sys from collections import OrderedDict from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn import data from options.train_options import TrainOptions from util.iter_counter import IterationCounter from util.visualizer import Visualizer from trainers.pix2pix_trainer import Pix2PixTrainer from util.logging_wandb import init_project,stop import torch from torch.distributions import Beta # parse options opt = TrainOptions().parse() # print options to help debugging print(' '.join(sys.argv)) # load the dataset dataloader = data.create_dataloader(opt) # create trainer for our model trainer = Pix2PixTrainer(opt) print(trainer) # create tool for counting iterations iter_counter = IterationCounter(opt, len(dataloader)) # create tool for visualization visualizer = Visualizer(opt) T = len(dataloader) b = torch.tensor([1], dtype=torch.float32) # Setup rich progress bar progress = Progress( TextColumn("[bold blue]{task.description}"), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), ) ## INIT WANDB init_project("results") epoch = 0 with progress: epoch_task = progress.add_task(f"[deep_pink4]Total Epochs[{epoch + 1}|{max(iter_counter.training_epochs())}]", total=len(iter_counter.training_epochs())) for epoch in iter_counter.training_epochs(): iter_counter.record_epoch_start(epoch) progress.update(epoch_task, advance=1) img_index = 0 iter_task = progress.add_task(f"[cyan]Images Index [{img_index}]", total=len(dataloader)) iteration = 0 while iteration < len(dataloader): for i,data_i in enumerate(dataloader,start=iter_counter.epoch_iter): # This will loop indefinitely if using InfiniteSamplerWrapper iter_counter.record_one_iteration() progress.update(iter_task, advance=1) t = iteration + 1 a = torch.tensor(((t - (0.5 * T)) / (0.25 * T)), dtype=torch.float32).exp() m = Beta(a, b) opt.alpha = m.sample().cuda() # Training # train generator if iteration % opt.D_steps_per_G == 0: trainer.run_generator_one_step(data_i, iteration, progress=progress, epoch=epoch, images_iter=img_index) img_index += 1 progress.update(iter_task, description=f"[cyan]Images Index [{img_index}|{len(dataloader)}]") # train discriminator trainer.run_discriminator_one_step(data_i, iteration) # Visualizations if iter_counter.needs_printing(): losses = trainer.get_latest_losses() visualizer.print_current_errors(epoch, iter_counter.epoch_iter, losses, iter_counter.time_per_iter) visualizer.plot_current_errors(losses, iter_counter.total_steps_so_far) if iter_counter.needs_displaying(): if opt.task == 'SIS': visuals = OrderedDict([('input_label', data_i['label'][0]), ('synthesized_image', trainer.get_latest_generated()[0]), ('real_image', data_i['image'][0])]) else: visuals = OrderedDict([('content', data_i['label'][0]), ('synthesized_image', trainer.get_latest_generated()[0]), ('style', data_i['image'][0])]) visualizer.display_current_results(visuals, epoch, iter_counter.total_steps_so_far) if iter_counter.needs_saving(): print('saving the latest model (epoch %d, total_steps %d)' % (epoch, iter_counter.total_steps_so_far)) trainer.save('latest') iter_counter.record_current_iter() # Visualizations and model saving as in the original script iteration += 1 if iteration >= opt.max_iterations_per_epoch: break trainer.update_learning_rate(epoch) iter_counter.record_epoch_end() progress.update(epoch_task, description=f"[deep_pink4]Total Epochs[{epoch + 1}|{max(iter_counter.training_epochs())}]") if epoch % opt.save_epoch_freq == 0 or epoch == iter_counter.total_epochs: print('saving the model at the end of epoch %d, iters %d' % (epoch, iter_counter.total_steps_so_far)) trainer.save('latest') trainer.save(epoch) stop() print('Training was successfully finished.')