import io import warnings import zipfile import httpx import polars as pl from datadex import materialize def fetch_bytes( url: str, *, timeout: float | httpx.Timeout = 120.0, follow_redirects: bool = True, ) -> bytes: """Download the content at ``url`` and return the raw bytes. The request is attempted with standard TLS verification. If that fails due to certificate validation errors (common behind corporate proxies), a single retry is performed with verification disabled while emitting a warning. """ headers = {"User-Agent": "datadex/0.1"} try: response = httpx.get( url, follow_redirects=follow_redirects, timeout=timeout, headers=headers, ) except httpx.HTTPError as exc: if "CERTIFICATE_VERIFY_FAILED" not in repr(exc): raise warnings.warn( f"Falling back to insecure TLS download for {url}", RuntimeWarning, stacklevel=2, ) else: response.raise_for_status() return response.content response = httpx.get( url, follow_redirects=follow_redirects, timeout=timeout, headers=headers, verify=False, ) response.raise_for_status() return response.content def world_development_indicators() -> pl.DataFrame: """ World Development Indicators (WDI) is the World Bank's premier compilation of cross-country comparable data on development. Bulk data download is available at https://datatopics.worldbank.org/world-development-indicators/ """ url = "https://databank.worldbank.org/data/download/WDI_CSV.zip" archive_bytes = fetch_bytes(url, timeout=300.0) with zipfile.ZipFile(io.BytesIO(archive_bytes)) as archive: with archive.open("WDICSV.csv") as csv_file: df = pl.read_csv(csv_file) # Reshape the dataframe df = df.unpivot( index=["Country Name", "Country Code", "Indicator Name", "Indicator Code"], value_name="Indicator Value", variable_name="Year", ) df = df.with_columns(pl.col("Year").cast(pl.Int32)) df = df.rename({ "Country Name": "country_name", "Country Code": "country_code", "Indicator Name": "indicator_name", "Indicator Code": "indicator_code", "Year": "year", "Indicator Value": "indicator_value", }) df = df.drop_nulls(subset=["indicator_value"]) return df.sort(["country_code", "year", "indicator_code"]) def main() -> None: materialize(world_development_indicators) if __name__ == "__main__": main()