# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO.""" import os import pandas as pd import datasets _CITATION = """TODO""" _DESCRIPTION = """\ TODO """ _HOMEPAGE = "https://doi.org/10.25573/data.17314730.v1" _LICENSE = "CC BY 4.0" _URLS = { "images": "https://smithsonian.figshare.com/ndownloader/files/31975544", "labels": "https://smithsonian.figshare.com/ndownloader/files/31975646", } class AmazonianFish(datasets.GeneratorBasedBuilder): """TODO""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel( names=[ "Ancistrus", "Apistogramma", "Astyanax", "Bario", "Bryconops", "Bujurquina", "Bunocephalus", "Characidium", "Charax", "Copella", "Corydoras", "Creagrutus", "Curimata", "Doras", "Erythrinus", "Gasteropelecus", "Gymnotus", "Hemigrammus", "Hyphessobrycon", "Knodus", "Moenkhausia", "Otocinclus", "Oxyropsis", "Phenacogaster", "Pimelodella", "Prochilodus", "Pygocentrus", "Pyrrhulina", "Rineloricaria", "Sorubim", "Tatia", "Tetragonopterus", "Tyttocharax", ] ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download_and_extract(_URLS["images"]) labels = dl_manager.download(_URLS["labels"]) df = pd.read_csv(labels) labels = df.to_dict(orient="records") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": os.path.join(images, "training_images"), "labels": labels, }, ), ] def _generate_examples(self, images, labels): for id_, example in enumerate(labels): yield id_, { "image": os.path.join(images, example["Genus"], example["Image_name"]), "label": example["Genus"], }