File size: 8,602 Bytes
56fbf4c dd675de 56fbf4c 384fce2 56fbf4c dd675de 56fbf4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Mathematics database."""
from __future__ import absolute_import, division, print_function
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
@article{2019arXiv,
author = {Saxton, Grefenstette, Hill, Kohli},
title = {Analysing Mathematical Reasoning Abilities of Neural Models},
year = {2019},
journal = {arXiv:1904.01557}
}
"""
_DESCRIPTION = """
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
"""
_DATA_URL = "https://storage.googleapis.com/mathematics-dataset/mathematics_dataset-v1.0.tar.gz"
_TRAIN_CATEGORY = [
"train-easy",
"train-medium",
"train-hard",
]
_INTERPOLATE_CATEGORY = [
"interpolate",
]
_MODULES = [
# extrapolate
"measurement__conversion",
# interpolate
"algebra__linear_1d",
"algebra__linear_1d_composed",
"algebra__linear_2d",
"algebra__linear_2d_composed",
"algebra__polynomial_roots",
"algebra__polynomial_roots_composed",
"algebra__sequence_next_term",
"algebra__sequence_nth_term",
"arithmetic__add_or_sub",
"arithmetic__add_or_sub_in_base",
"arithmetic__add_sub_multiple",
"arithmetic__div",
"arithmetic__mixed",
"arithmetic__mul",
"arithmetic__mul_div_multiple",
"arithmetic__nearest_integer_root",
"arithmetic__simplify_surd",
"calculus__differentiate",
"calculus__differentiate_composed",
"comparison__closest",
"comparison__closest_composed",
"comparison__kth_biggest",
"comparison__kth_biggest_composed",
"comparison__pair",
"comparison__pair_composed",
"comparison__sort",
"comparison__sort_composed",
"measurement__conversion",
"measurement__time",
"numbers__base_conversion",
"numbers__div_remainder",
"numbers__div_remainder_composed",
"numbers__gcd",
"numbers__gcd_composed",
"numbers__is_factor",
"numbers__is_factor_composed",
"numbers__is_prime",
"numbers__is_prime_composed",
"numbers__lcm",
"numbers__lcm_composed",
"numbers__list_prime_factors",
"numbers__list_prime_factors_composed",
"numbers__place_value",
"numbers__place_value_composed",
"numbers__round_number",
"numbers__round_number_composed",
"polynomials__add",
"polynomials__coefficient_named",
"polynomials__collect",
"polynomials__compose",
"polynomials__evaluate",
"polynomials__evaluate_composed",
"polynomials__expand",
"polynomials__simplify_power",
"probability__swr_p_level_set",
"probability__swr_p_sequence",
# train-easy train-medium train-hard
"algebra__linear_1d",
"algebra__linear_1d_composed",
"algebra__linear_2d",
"algebra__linear_2d_composed",
"algebra__polynomial_roots",
"algebra__polynomial_roots_composed",
"algebra__sequence_next_term",
"algebra__sequence_nth_term",
"arithmetic__add_or_sub",
"arithmetic__add_or_sub_in_base",
"arithmetic__add_sub_multiple",
"arithmetic__div",
"arithmetic__mixed",
"arithmetic__mul",
"arithmetic__mul_div_multiple",
"arithmetic__nearest_integer_root",
"arithmetic__simplify_surd",
"calculus__differentiate",
"calculus__differentiate_composed",
"comparison__closest",
"comparison__closest_composed",
"comparison__kth_biggest",
"comparison__kth_biggest_composed",
"comparison__pair",
"comparison__pair_composed",
"comparison__sort",
"comparison__sort_composed",
"measurement__conversion",
"measurement__time",
"numbers__base_conversion",
"numbers__div_remainder",
"numbers__div_remainder_composed",
"numbers__gcd",
"numbers__gcd_composed",
"numbers__is_factor",
"numbers__is_factor_composed",
"numbers__is_prime",
"numbers__is_prime_composed",
"numbers__lcm",
"numbers__lcm_composed",
"numbers__list_prime_factors",
"numbers__list_prime_factors_composed",
"numbers__place_value",
"numbers__place_value_composed",
"numbers__round_number",
"numbers__round_number_composed",
"polynomials__add",
"polynomials__coefficient_named",
"polynomials__collect",
"polynomials__compose",
"polynomials__evaluate",
"polynomials__evaluate_composed",
"polynomials__expand",
"polynomials__simplify_power",
"probability__swr_p_level_set",
"probability__swr_p_sequence",
]
_QUESTION = "question"
_ANSWER = "answer"
_DATASET_VERSION = "mathematics_dataset-v1.0"
def _generate_builder_configs():
"""Generate configs with different subsets of mathematics dataset."""
configs = []
for module in sorted(set(_MODULES)):
configs.append(
datasets.BuilderConfig(
name=module,
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
)
)
return configs
class MathDataset(datasets.GeneratorBasedBuilder):
"""Math Dataset."""
BUILDER_CONFIGS = _generate_builder_configs()
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
_QUESTION: datasets.Value("string"),
_ANSWER: datasets.Value("string"),
}
),
supervised_keys=(_QUESTION, _ANSWER),
homepage="https://github.com/deepmind/mathematics_dataset",
citation=_CITATION,
)
def _read_data_from_all_categories(self, directory, config, categories):
lines = []
for category in categories:
data_file = os.path.join(directory, _DATASET_VERSION, category, config)
if os.path.exists(data_file):
with open(data_file, encoding="utf-8") as f:
ls = f.read().split("\n")
for line in ls[::-1]:
if not line:
ls.remove(line)
lines.extend(ls)
return lines
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
directory = dl_manager.download_and_extract(_DATA_URL)
config = self.config.name + ".txt"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"directory": directory,
"config": config,
"categories": _TRAIN_CATEGORY,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"directory": directory,
"config": config,
"categories": _INTERPOLATE_CATEGORY,
},
),
]
def _generate_examples(self, directory, config, categories):
"""Yields examples based on directory, module file.."""
lines = self._read_data_from_all_categories(directory, config, categories)
logger.info("%s: %s contains total: %d", categories, config, len(lines))
questions = lines[::2]
answers = lines[1::2]
assert len(answers) == len(questions), "answers: %d do not match questions: %d" % (
len(answers),
len(questions),
)
for idx, (q, a) in enumerate(zip(questions, answers)):
result = {_QUESTION: q, _ANSWER: a}
if all(result.values()):
yield idx, result
|