# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Mathematics database.""" import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ @article{2019arXiv, author = {Saxton, Grefenstette, Hill, Kohli}, title = {Analysing Mathematical Reasoning Abilities of Neural Models}, year = {2019}, journal = {arXiv:1904.01557} } """ _DESCRIPTION = """ Mathematics database. This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models. Original paper: Analysing Mathematical Reasoning Abilities of Neural Models (Saxton, Grefenstette, Hill, Kohli). Example usage: train_examples, val_examples = datasets.load_dataset( 'math_dataset/arithmetic__mul', split=['train', 'test'], as_supervised=True) """ _DATA_URL = "https://storage.googleapis.com/mathematics-dataset/mathematics_dataset-v1.0.tar.gz" _TRAIN_CATEGORY = [ "train-easy", "train-medium", "train-hard", ] _INTERPOLATE_CATEGORY = [ "interpolate", ] _MODULES = [ # extrapolate "measurement__conversion", # interpolate "algebra__linear_1d", "algebra__linear_1d_composed", "algebra__linear_2d", "algebra__linear_2d_composed", "algebra__polynomial_roots", "algebra__polynomial_roots_composed", "algebra__sequence_next_term", "algebra__sequence_nth_term", "arithmetic__add_or_sub", "arithmetic__add_or_sub_in_base", "arithmetic__add_sub_multiple", "arithmetic__div", "arithmetic__mixed", "arithmetic__mul", "arithmetic__mul_div_multiple", "arithmetic__nearest_integer_root", "arithmetic__simplify_surd", "calculus__differentiate", "calculus__differentiate_composed", "comparison__closest", "comparison__closest_composed", "comparison__kth_biggest", "comparison__kth_biggest_composed", "comparison__pair", "comparison__pair_composed", "comparison__sort", "comparison__sort_composed", "measurement__conversion", "measurement__time", "numbers__base_conversion", "numbers__div_remainder", "numbers__div_remainder_composed", "numbers__gcd", "numbers__gcd_composed", "numbers__is_factor", "numbers__is_factor_composed", "numbers__is_prime", "numbers__is_prime_composed", "numbers__lcm", "numbers__lcm_composed", "numbers__list_prime_factors", "numbers__list_prime_factors_composed", "numbers__place_value", "numbers__place_value_composed", "numbers__round_number", "numbers__round_number_composed", "polynomials__add", "polynomials__coefficient_named", "polynomials__collect", "polynomials__compose", "polynomials__evaluate", "polynomials__evaluate_composed", "polynomials__expand", "polynomials__simplify_power", "probability__swr_p_level_set", "probability__swr_p_sequence", # train-easy train-medium train-hard "algebra__linear_1d", "algebra__linear_1d_composed", "algebra__linear_2d", "algebra__linear_2d_composed", "algebra__polynomial_roots", "algebra__polynomial_roots_composed", "algebra__sequence_next_term", "algebra__sequence_nth_term", "arithmetic__add_or_sub", "arithmetic__add_or_sub_in_base", "arithmetic__add_sub_multiple", "arithmetic__div", "arithmetic__mixed", "arithmetic__mul", "arithmetic__mul_div_multiple", "arithmetic__nearest_integer_root", "arithmetic__simplify_surd", "calculus__differentiate", "calculus__differentiate_composed", "comparison__closest", "comparison__closest_composed", "comparison__kth_biggest", "comparison__kth_biggest_composed", "comparison__pair", "comparison__pair_composed", "comparison__sort", "comparison__sort_composed", "measurement__conversion", "measurement__time", "numbers__base_conversion", "numbers__div_remainder", "numbers__div_remainder_composed", "numbers__gcd", "numbers__gcd_composed", "numbers__is_factor", "numbers__is_factor_composed", "numbers__is_prime", "numbers__is_prime_composed", "numbers__lcm", "numbers__lcm_composed", "numbers__list_prime_factors", "numbers__list_prime_factors_composed", "numbers__place_value", "numbers__place_value_composed", "numbers__round_number", "numbers__round_number_composed", "polynomials__add", "polynomials__coefficient_named", "polynomials__collect", "polynomials__compose", "polynomials__evaluate", "polynomials__evaluate_composed", "polynomials__expand", "polynomials__simplify_power", "probability__swr_p_level_set", "probability__swr_p_sequence", ] _QUESTION = "question" _ANSWER = "answer" _DATASET_VERSION = "mathematics_dataset-v1.0" def _generate_builder_configs(): """Generate configs with different subsets of mathematics dataset.""" configs = [] for module in sorted(set(_MODULES)): configs.append( datasets.BuilderConfig( name=module, version=datasets.Version("1.0.0"), description=_DESCRIPTION, ) ) return configs class MathDataset(datasets.GeneratorBasedBuilder): """Math Dataset.""" BUILDER_CONFIGS = _generate_builder_configs() def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { _QUESTION: datasets.Value("string"), _ANSWER: datasets.Value("string"), } ), supervised_keys=(_QUESTION, _ANSWER), homepage="https://github.com/deepmind/mathematics_dataset", citation=_CITATION, ) def _read_data_from_all_categories(self, directory, config, categories): lines = [] for category in categories: data_file = os.path.join(directory, _DATASET_VERSION, category, config) if os.path.exists(data_file): with open(data_file, encoding="utf-8") as f: ls = f.read().split("\n") for line in ls[::-1]: if not line: ls.remove(line) lines.extend(ls) return lines def _split_generators(self, dl_manager): """Returns SplitGenerators.""" directory = dl_manager.download_and_extract(_DATA_URL) config = self.config.name + ".txt" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "directory": directory, "config": config, "categories": _TRAIN_CATEGORY, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "directory": directory, "config": config, "categories": _INTERPOLATE_CATEGORY, }, ), ] def _generate_examples(self, directory, config, categories): """Yields examples based on directory, module file..""" lines = self._read_data_from_all_categories(directory, config, categories) logger.info("%s: %s contains total: %d", categories, config, len(lines)) questions = lines[::2] answers = lines[1::2] assert len(answers) == len(questions), "answers: %d do not match questions: %d" % ( len(answers), len(questions), ) for idx, (q, a) in enumerate(zip(questions, answers)): result = {_QUESTION: q, _ANSWER: a} if all(result.values()): yield idx, result