|
""" |
|
Data loader script for the eur-lex-sum summarization dataset by Aumiller, Chouhan and Gertz. |
|
The script itself was adapted from the XLSum data loader. |
|
""" |
|
import os |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{aumiller-etal-2022-eur, |
|
author = {Aumiller, Dennis and Chouhan, Ashish and Gertz, Michael}, |
|
title = {{EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain}}, |
|
journal = {CoRR}, |
|
volume = {abs/2210.13448}, |
|
eprinttype = {arXiv}, |
|
eprint = {2210.13448}, |
|
url = {https://arxiv.org/abs/2210.13448} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/achouhan93/eur-lex-sum" |
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)" |
|
|
|
_DESCRIPTION = """\ |
|
The EUR-Lex-Sum dataset is a multilingual resource intended for text summarization in the legal domain. |
|
It is based on human-written summaries of legal acts issued by the European Union. |
|
It distinguishes itself by introducing a smaller set of high-quality human-written samples, |
|
each of which have much longer references (and summaries!) than comparable datasets. |
|
Additionally, the underlying legal acts provide a challenging domain-specific application to legal texts, |
|
which are so far underrepresented in non-English languages. |
|
For each legal act, the sample can be available in up to 24 languages |
|
(the officially recognized languages in the European Union); |
|
the validation and test samples consist entirely of samples available in all languages, |
|
and are aligned across all languages at the paragraph level. |
|
""" |
|
|
|
_LANGUAGES = [ |
|
"bulgarian", |
|
"czech", |
|
"dutch", |
|
"estonian", |
|
"french", |
|
"greek", |
|
"", |
|
"irish", |
|
"latvian", |
|
"maltese", |
|
"portuguese", |
|
"slovak", |
|
"spanish", |
|
"croatian", |
|
"danish", |
|
"english", |
|
"finnish", |
|
"german", |
|
"hungarian", |
|
"italian", |
|
"lithuanian", |
|
"polish", |
|
"romanian", |
|
"slovenian", |
|
"swedish" |
|
] |
|
|
|
_URL = "https://huggingface.co/datasets/dennlinger/eur-lex-sum/resolve/main/data/" |
|
_URLS = { |
|
"train": _URL + "{}/train.json", |
|
"validation": _URL + "{}/validation.json", |
|
"test": _URL + "{}/test.json", |
|
} |
|
|
|
|
|
class EurLexSumConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for EUR-Lex-Sum.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for EUR-Lex-Sum. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(EurLexSumConfig, self).__init__(**kwargs) |
|
|
|
|
|
class EurLexSum(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=f"{lang}", |
|
version=datasets.Version("1.0.0") |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"celex_id": datasets.Value("string"), |
|
"reference": datasets.Value("string"), |
|
"summary": datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
lang = str(self.config.name) |
|
|
|
|
|
urls = {k: url.format(lang) for k, url in _URLS.items()} |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath) as f: |
|
for idx_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield idx_, data |