|
import json |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal |
|
multiple choice questions with a diverse set of science topics and annotations of their answers |
|
with corresponding lectures and explanations. |
|
The lecture and explanation provide general external knowledge and specific reasons, |
|
respectively, for arriving at the correct answer.""" |
|
|
|
|
|
_HOMEPAGE = "https://scienceqa.github.io" |
|
|
|
_CITATION = """\ |
|
@inproceedings{lu2022learn, |
|
title={Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering}, |
|
author={Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Ashwin Kalyan}, |
|
booktitle={The 36th Conference on Neural Information Processing Systems (NeurIPS)}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_LICENSE = "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)" |
|
|
|
|
|
class ScienceQA(datasets.GeneratorBasedBuilder): |
|
"""Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal |
|
multiple choice questions with a diverse set of science topics and annotations of their answers |
|
with corresponding lectures and explanations. |
|
The lecture and explanation provide general external knowledge and specific reasons, |
|
respectively, for arriving at the correct answer.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.features.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("int8"), |
|
"hint": datasets.Value("string"), |
|
"task": datasets.Value("string"), |
|
"grade": datasets.Value("string"), |
|
"subject": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"skill": datasets.Value("string"), |
|
"lecture": datasets.Value("string"), |
|
"solution": datasets.Value("string") |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
text_path = Path.cwd() / 'text' / 'problems.json' |
|
image_dir = Path.cwd() / 'images' |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"text_path": text_path, |
|
"image_dir": image_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"text_path": text_path, |
|
"image_dir": image_dir, |
|
"split": "val", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"text_path": text_path, |
|
"image_dir": image_dir, |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, text_path, image_dir, split): |
|
with open(text_path, encoding="utf-8") as f: |
|
|
|
data = json.load(f) |
|
ignore_keys = ['image', 'split'] |
|
|
|
|
|
for image_id, row in data.items(): |
|
|
|
if row['split'] == split: |
|
|
|
|
|
|
|
if row['image']: |
|
image_path = image_dir / split / image_id / 'image.png' |
|
image_bytes = image_path.read_bytes() |
|
image_dict = {'path': str(image_path), 'bytes': image_bytes} |
|
else: |
|
image_dict = None |
|
|
|
|
|
relevant_row = {k: v for k, v in row.items() if k not in ignore_keys} |
|
|
|
return_dict = { |
|
'image': image_dict, |
|
**relevant_row |
|
} |
|
yield image_id, return_dict |
|
|