goodwiki_long_toy / goodwiki_long_toy.py
devrim's picture
Update goodwiki_long_toy.py
bd0d898 verified
# coding=utf-8
# Copyright 2023 Devrim Cavusoglu and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Goodwiki Long Subset."""
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Dataset consisting of long wikipedia articles in markdown format.
"""
_URLS = {
"train": [
"train/partition_0.jsonl",
],
"test": [
"test/partition_0.jsonl",
]
}
class GoodWikiLongToyDatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for Dataset."""
def __init__(self, **kwargs):
"""BuilderConfig for Dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(GoodWikiLongToyDatasetConfig, self).__init__(**kwargs)
@property
def features(self):
return {
"id": datasets.Value("string"),
"url": datasets.Value("null"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
"revid": datasets.Value("string"),
"description": datasets.Value("string"),
"categories": datasets.Sequence(datasets.Value("string")),
}
class GoodWikiLongToyDataset(datasets.GeneratorBasedBuilder):
"""WikiLongDataset Classification dataset. Version 1.0."""
BUILDER_CONFIGS = [
GoodWikiLongToyDatasetConfig(
version=datasets.Version("1.0.0", ""), description="Goodwiki Long Articles"
)
]
BUILDER_CONFIG_CLASS = GoodWikiLongToyDatasetConfig
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(self.config.features),
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir["train"]}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir["test"]}
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
if isinstance(filepath, str):
filepath = [filepath]
key = 0
for path in filepath:
with open(path, encoding="utf-8") as data:
for article_data in data:
article = json.loads(article_data)
article["text"] = "# " + article["title"] + "\n\n" + article.pop("text")
yield key, article
key += 1