|
import inspect |
|
import re |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
from packaging import version |
|
from transformers import CLIPFeatureExtractor, CLIPTokenizer |
|
|
|
import diffusers |
|
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.utils import logging |
|
|
|
|
|
try: |
|
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE |
|
except ImportError: |
|
ORT_TO_NP_TYPE = { |
|
"tensor(bool)": np.bool_, |
|
"tensor(int8)": np.int8, |
|
"tensor(uint8)": np.uint8, |
|
"tensor(int16)": np.int16, |
|
"tensor(uint16)": np.uint16, |
|
"tensor(int32)": np.int32, |
|
"tensor(uint32)": np.uint32, |
|
"tensor(int64)": np.int64, |
|
"tensor(uint64)": np.uint64, |
|
"tensor(float16)": np.float16, |
|
"tensor(float)": np.float32, |
|
"tensor(double)": np.float64, |
|
} |
|
|
|
try: |
|
from diffusers.utils import PIL_INTERPOLATION |
|
except ImportError: |
|
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): |
|
PIL_INTERPOLATION = { |
|
"linear": PIL.Image.Resampling.BILINEAR, |
|
"bilinear": PIL.Image.Resampling.BILINEAR, |
|
"bicubic": PIL.Image.Resampling.BICUBIC, |
|
"lanczos": PIL.Image.Resampling.LANCZOS, |
|
"nearest": PIL.Image.Resampling.NEAREST, |
|
} |
|
else: |
|
PIL_INTERPOLATION = { |
|
"linear": PIL.Image.LINEAR, |
|
"bilinear": PIL.Image.BILINEAR, |
|
"bicubic": PIL.Image.BICUBIC, |
|
"lanczos": PIL.Image.LANCZOS, |
|
"nearest": PIL.Image.NEAREST, |
|
} |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
re_attention = re.compile( |
|
r""" |
|
\\\(| |
|
\\\)| |
|
\\\[| |
|
\\]| |
|
\\\\| |
|
\\| |
|
\(| |
|
\[| |
|
:([+-]?[.\d]+)\)| |
|
\)| |
|
]| |
|
[^\\()\[\]:]+| |
|
: |
|
""", |
|
re.X, |
|
) |
|
|
|
|
|
def parse_prompt_attention(text): |
|
""" |
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. |
|
Accepted tokens are: |
|
(abc) - increases attention to abc by a multiplier of 1.1 |
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12 |
|
[abc] - decreases attention to abc by a multiplier of 1.1 |
|
\( - literal character '(' |
|
\[ - literal character '[' |
|
\) - literal character ')' |
|
\] - literal character ']' |
|
\\ - literal character '\' |
|
anything else - just text |
|
>>> parse_prompt_attention('normal text') |
|
[['normal text', 1.0]] |
|
>>> parse_prompt_attention('an (important) word') |
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] |
|
>>> parse_prompt_attention('(unbalanced') |
|
[['unbalanced', 1.1]] |
|
>>> parse_prompt_attention('\(literal\]') |
|
[['(literal]', 1.0]] |
|
>>> parse_prompt_attention('(unnecessary)(parens)') |
|
[['unnecessaryparens', 1.1]] |
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') |
|
[['a ', 1.0], |
|
['house', 1.5730000000000004], |
|
[' ', 1.1], |
|
['on', 1.0], |
|
[' a ', 1.1], |
|
['hill', 0.55], |
|
[', sun, ', 1.1], |
|
['sky', 1.4641000000000006], |
|
['.', 1.1]] |
|
""" |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
|
|
round_bracket_multiplier = 1.1 |
|
square_bracket_multiplier = 1 / 1.1 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith("\\"): |
|
res.append([text[1:], 1.0]) |
|
elif text == "(": |
|
round_brackets.append(len(res)) |
|
elif text == "[": |
|
square_brackets.append(len(res)) |
|
elif weight is not None and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ")" and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == "]" and len(square_brackets) > 0: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
res.append([text, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
|
|
def get_prompts_with_weights(pipe, prompt: List[str], max_length: int): |
|
r""" |
|
Tokenize a list of prompts and return its tokens with weights of each token. |
|
|
|
No padding, starting or ending token is included. |
|
""" |
|
tokens = [] |
|
weights = [] |
|
truncated = False |
|
for text in prompt: |
|
texts_and_weights = parse_prompt_attention(text) |
|
text_token = [] |
|
text_weight = [] |
|
for word, weight in texts_and_weights: |
|
|
|
token = pipe.tokenizer(word, return_tensors="np").input_ids[0, 1:-1] |
|
text_token += list(token) |
|
|
|
text_weight += [weight] * len(token) |
|
|
|
if len(text_token) > max_length: |
|
truncated = True |
|
break |
|
|
|
if len(text_token) > max_length: |
|
truncated = True |
|
text_token = text_token[:max_length] |
|
text_weight = text_weight[:max_length] |
|
tokens.append(text_token) |
|
weights.append(text_weight) |
|
if truncated: |
|
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") |
|
return tokens, weights |
|
|
|
|
|
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77): |
|
r""" |
|
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. |
|
""" |
|
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) |
|
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length |
|
for i in range(len(tokens)): |
|
tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i])) |
|
if no_boseos_middle: |
|
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) |
|
else: |
|
w = [] |
|
if len(weights[i]) == 0: |
|
w = [1.0] * weights_length |
|
else: |
|
for j in range(max_embeddings_multiples): |
|
w.append(1.0) |
|
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] |
|
w.append(1.0) |
|
w += [1.0] * (weights_length - len(w)) |
|
weights[i] = w[:] |
|
|
|
return tokens, weights |
|
|
|
|
|
def get_unweighted_text_embeddings( |
|
pipe, |
|
text_input: np.array, |
|
chunk_length: int, |
|
no_boseos_middle: Optional[bool] = True, |
|
): |
|
""" |
|
When the length of tokens is a multiple of the capacity of the text encoder, |
|
it should be split into chunks and sent to the text encoder individually. |
|
""" |
|
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) |
|
if max_embeddings_multiples > 1: |
|
text_embeddings = [] |
|
for i in range(max_embeddings_multiples): |
|
|
|
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].copy() |
|
|
|
|
|
text_input_chunk[:, 0] = text_input[0, 0] |
|
text_input_chunk[:, -1] = text_input[0, -1] |
|
|
|
text_embedding = pipe.text_encoder(input_ids=text_input_chunk)[0] |
|
|
|
if no_boseos_middle: |
|
if i == 0: |
|
|
|
text_embedding = text_embedding[:, :-1] |
|
elif i == max_embeddings_multiples - 1: |
|
|
|
text_embedding = text_embedding[:, 1:] |
|
else: |
|
|
|
text_embedding = text_embedding[:, 1:-1] |
|
|
|
text_embeddings.append(text_embedding) |
|
text_embeddings = np.concatenate(text_embeddings, axis=1) |
|
else: |
|
text_embeddings = pipe.text_encoder(input_ids=text_input)[0] |
|
return text_embeddings |
|
|
|
|
|
def get_weighted_text_embeddings( |
|
pipe, |
|
prompt: Union[str, List[str]], |
|
uncond_prompt: Optional[Union[str, List[str]]] = None, |
|
max_embeddings_multiples: Optional[int] = 4, |
|
no_boseos_middle: Optional[bool] = False, |
|
skip_parsing: Optional[bool] = False, |
|
skip_weighting: Optional[bool] = False, |
|
**kwargs, |
|
): |
|
r""" |
|
Prompts can be assigned with local weights using brackets. For example, |
|
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', |
|
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. |
|
|
|
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. |
|
|
|
Args: |
|
pipe (`OnnxStableDiffusionPipeline`): |
|
Pipe to provide access to the tokenizer and the text encoder. |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
uncond_prompt (`str` or `List[str]`): |
|
The unconditional prompt or prompts for guide the image generation. If unconditional prompt |
|
is provided, the embeddings of prompt and uncond_prompt are concatenated. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `1`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
no_boseos_middle (`bool`, *optional*, defaults to `False`): |
|
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and |
|
ending token in each of the chunk in the middle. |
|
skip_parsing (`bool`, *optional*, defaults to `False`): |
|
Skip the parsing of brackets. |
|
skip_weighting (`bool`, *optional*, defaults to `False`): |
|
Skip the weighting. When the parsing is skipped, it is forced True. |
|
""" |
|
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 |
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
|
|
if not skip_parsing: |
|
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2) |
|
if uncond_prompt is not None: |
|
if isinstance(uncond_prompt, str): |
|
uncond_prompt = [uncond_prompt] |
|
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2) |
|
else: |
|
prompt_tokens = [ |
|
token[1:-1] |
|
for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True, return_tensors="np").input_ids |
|
] |
|
prompt_weights = [[1.0] * len(token) for token in prompt_tokens] |
|
if uncond_prompt is not None: |
|
if isinstance(uncond_prompt, str): |
|
uncond_prompt = [uncond_prompt] |
|
uncond_tokens = [ |
|
token[1:-1] |
|
for token in pipe.tokenizer( |
|
uncond_prompt, |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
).input_ids |
|
] |
|
uncond_weights = [[1.0] * len(token) for token in uncond_tokens] |
|
|
|
|
|
max_length = max([len(token) for token in prompt_tokens]) |
|
if uncond_prompt is not None: |
|
max_length = max(max_length, max([len(token) for token in uncond_tokens])) |
|
|
|
max_embeddings_multiples = min( |
|
max_embeddings_multiples, |
|
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, |
|
) |
|
max_embeddings_multiples = max(1, max_embeddings_multiples) |
|
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 |
|
|
|
|
|
bos = pipe.tokenizer.bos_token_id |
|
eos = pipe.tokenizer.eos_token_id |
|
prompt_tokens, prompt_weights = pad_tokens_and_weights( |
|
prompt_tokens, |
|
prompt_weights, |
|
max_length, |
|
bos, |
|
eos, |
|
no_boseos_middle=no_boseos_middle, |
|
chunk_length=pipe.tokenizer.model_max_length, |
|
) |
|
prompt_tokens = np.array(prompt_tokens, dtype=np.int32) |
|
if uncond_prompt is not None: |
|
uncond_tokens, uncond_weights = pad_tokens_and_weights( |
|
uncond_tokens, |
|
uncond_weights, |
|
max_length, |
|
bos, |
|
eos, |
|
no_boseos_middle=no_boseos_middle, |
|
chunk_length=pipe.tokenizer.model_max_length, |
|
) |
|
uncond_tokens = np.array(uncond_tokens, dtype=np.int32) |
|
|
|
|
|
text_embeddings = get_unweighted_text_embeddings( |
|
pipe, |
|
prompt_tokens, |
|
pipe.tokenizer.model_max_length, |
|
no_boseos_middle=no_boseos_middle, |
|
) |
|
prompt_weights = np.array(prompt_weights, dtype=text_embeddings.dtype) |
|
if uncond_prompt is not None: |
|
uncond_embeddings = get_unweighted_text_embeddings( |
|
pipe, |
|
uncond_tokens, |
|
pipe.tokenizer.model_max_length, |
|
no_boseos_middle=no_boseos_middle, |
|
) |
|
uncond_weights = np.array(uncond_weights, dtype=uncond_embeddings.dtype) |
|
|
|
|
|
|
|
if (not skip_parsing) and (not skip_weighting): |
|
previous_mean = text_embeddings.mean(axis=(-2, -1)) |
|
text_embeddings *= prompt_weights[:, :, None] |
|
text_embeddings *= (previous_mean / text_embeddings.mean(axis=(-2, -1)))[:, None, None] |
|
if uncond_prompt is not None: |
|
previous_mean = uncond_embeddings.mean(axis=(-2, -1)) |
|
uncond_embeddings *= uncond_weights[:, :, None] |
|
uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=(-2, -1)))[:, None, None] |
|
|
|
|
|
|
|
|
|
if uncond_prompt is not None: |
|
return text_embeddings, uncond_embeddings |
|
|
|
return text_embeddings |
|
|
|
|
|
def preprocess_image(image): |
|
w, h = image.size |
|
w, h = map(lambda x: x - x % 32, (w, h)) |
|
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[None].transpose(0, 3, 1, 2) |
|
return 2.0 * image - 1.0 |
|
|
|
|
|
def preprocess_mask(mask, scale_factor=8): |
|
mask = mask.convert("L") |
|
w, h = mask.size |
|
w, h = map(lambda x: x - x % 32, (w, h)) |
|
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) |
|
mask = np.array(mask).astype(np.float32) / 255.0 |
|
mask = np.tile(mask, (4, 1, 1)) |
|
mask = mask[None].transpose(0, 1, 2, 3) |
|
mask = 1 - mask |
|
return mask |
|
|
|
|
|
class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing |
|
weighting in prompt. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
""" |
|
if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"): |
|
|
|
def __init__( |
|
self, |
|
vae_encoder: OnnxRuntimeModel, |
|
vae_decoder: OnnxRuntimeModel, |
|
text_encoder: OnnxRuntimeModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: OnnxRuntimeModel, |
|
scheduler: SchedulerMixin, |
|
safety_checker: OnnxRuntimeModel, |
|
feature_extractor: CLIPFeatureExtractor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__( |
|
vae_encoder=vae_encoder, |
|
vae_decoder=vae_decoder, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
requires_safety_checker=requires_safety_checker, |
|
) |
|
self.__init__additional__() |
|
|
|
else: |
|
|
|
def __init__( |
|
self, |
|
vae_encoder: OnnxRuntimeModel, |
|
vae_decoder: OnnxRuntimeModel, |
|
text_encoder: OnnxRuntimeModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: OnnxRuntimeModel, |
|
scheduler: SchedulerMixin, |
|
safety_checker: OnnxRuntimeModel, |
|
feature_extractor: CLIPFeatureExtractor, |
|
): |
|
super().__init__( |
|
vae_encoder=vae_encoder, |
|
vae_decoder=vae_decoder, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.__init__additional__() |
|
|
|
def __init__additional__(self): |
|
self.unet_in_channels = 4 |
|
self.vae_scale_factor = 8 |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
max_embeddings_multiples, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `list(int)`): |
|
prompt to be encoded |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
""" |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
if negative_prompt is None: |
|
negative_prompt = [""] * batch_size |
|
elif isinstance(negative_prompt, str): |
|
negative_prompt = [negative_prompt] * batch_size |
|
if batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
|
|
text_embeddings, uncond_embeddings = get_weighted_text_embeddings( |
|
pipe=self, |
|
prompt=prompt, |
|
uncond_prompt=negative_prompt if do_classifier_free_guidance else None, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
) |
|
|
|
text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0) |
|
if do_classifier_free_guidance: |
|
uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0) |
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) |
|
|
|
return text_embeddings |
|
|
|
def check_inputs(self, prompt, height, width, strength, callback_steps): |
|
if not isinstance(prompt, str) and not isinstance(prompt, list): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
def get_timesteps(self, num_inference_steps, strength, is_text2img): |
|
if is_text2img: |
|
return self.scheduler.timesteps, num_inference_steps |
|
else: |
|
|
|
offset = self.scheduler.config.get("steps_offset", 0) |
|
init_timestep = int(num_inference_steps * strength) + offset |
|
init_timestep = min(init_timestep, num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep + offset, 0) |
|
timesteps = self.scheduler.timesteps[t_start:] |
|
return timesteps, num_inference_steps - t_start |
|
|
|
def run_safety_checker(self, image): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor( |
|
self.numpy_to_pil(image), return_tensors="np" |
|
).pixel_values.astype(image.dtype) |
|
|
|
images, has_nsfw_concept = [], [] |
|
for i in range(image.shape[0]): |
|
image_i, has_nsfw_concept_i = self.safety_checker( |
|
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] |
|
) |
|
images.append(image_i) |
|
has_nsfw_concept.append(has_nsfw_concept_i[0]) |
|
image = np.concatenate(images) |
|
else: |
|
has_nsfw_concept = None |
|
return image, has_nsfw_concept |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / 0.18215 * latents |
|
|
|
|
|
image = np.concatenate( |
|
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] |
|
) |
|
image = np.clip(image / 2 + 0.5, 0, 1) |
|
image = image.transpose((0, 2, 3, 1)) |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, generator, latents=None): |
|
if image is None: |
|
shape = ( |
|
batch_size, |
|
self.unet_in_channels, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
|
|
if latents is None: |
|
latents = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
|
|
|
|
latents = (torch.from_numpy(latents) * self.scheduler.init_noise_sigma).numpy() |
|
return latents, None, None |
|
else: |
|
init_latents = self.vae_encoder(sample=image)[0] |
|
init_latents = 0.18215 * init_latents |
|
init_latents = np.concatenate([init_latents] * batch_size, axis=0) |
|
init_latents_orig = init_latents |
|
shape = init_latents.shape |
|
|
|
|
|
noise = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype) |
|
latents = self.scheduler.add_noise( |
|
torch.from_numpy(init_latents), torch.from_numpy(noise), timestep |
|
).numpy() |
|
return latents, init_latents_orig, noise |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
image: Union[np.ndarray, PIL.Image.Image] = None, |
|
mask_image: Union[np.ndarray, PIL.Image.Image] = None, |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
strength: float = 0.8, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[np.ndarray] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, |
|
is_cancelled_callback: Optional[Callable[[], bool]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
image (`np.ndarray` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
mask_image (`np.ndarray` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a |
|
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should |
|
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. |
|
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The |
|
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added |
|
noise will be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`np.ndarray`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. |
|
is_cancelled_callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. If the function returns |
|
`True`, the inference will be cancelled. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
`None` if cancelled by `is_cancelled_callback`, |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt, height, width, strength, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_embeddings = self._encode_prompt( |
|
prompt, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
max_embeddings_multiples, |
|
) |
|
dtype = text_embeddings.dtype |
|
|
|
|
|
if isinstance(image, PIL.Image.Image): |
|
image = preprocess_image(image) |
|
if image is not None: |
|
image = image.astype(dtype) |
|
if isinstance(mask_image, PIL.Image.Image): |
|
mask_image = preprocess_mask(mask_image, self.vae_scale_factor) |
|
if mask_image is not None: |
|
mask = mask_image.astype(dtype) |
|
mask = np.concatenate([mask] * batch_size * num_images_per_prompt) |
|
else: |
|
mask = None |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
timestep_dtype = next( |
|
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" |
|
) |
|
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, image is None) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
latents, init_latents_orig, noise = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
dtype, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) |
|
latent_model_input = latent_model_input.numpy() |
|
|
|
|
|
noise_pred = self.unet( |
|
sample=latent_model_input, |
|
timestep=np.array([t], dtype=timestep_dtype), |
|
encoder_hidden_states=text_embeddings, |
|
) |
|
noise_pred = noise_pred[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
scheduler_output = self.scheduler.step( |
|
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs |
|
) |
|
latents = scheduler_output.prev_sample.numpy() |
|
|
|
if mask is not None: |
|
|
|
init_latents_proper = self.scheduler.add_noise( |
|
torch.from_numpy(init_latents_orig), |
|
torch.from_numpy(noise), |
|
t, |
|
).numpy() |
|
latents = (init_latents_proper * mask) + (latents * (1 - mask)) |
|
|
|
|
|
if i % callback_steps == 0: |
|
if callback is not None: |
|
callback(i, t, latents) |
|
if is_cancelled_callback is not None and is_cancelled_callback(): |
|
return None |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return image, has_nsfw_concept |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
def text2img( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[np.ndarray] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
): |
|
r""" |
|
Function for text-to-image generation. |
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`np.ndarray`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
def img2img( |
|
self, |
|
image: Union[np.ndarray, PIL.Image.Image], |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
): |
|
r""" |
|
Function for image-to-image generation. |
|
Args: |
|
image (`np.ndarray` or `PIL.Image.Image`): |
|
`Image`, or ndarray representing an image batch, that will be used as the starting point for the |
|
process. |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. |
|
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The |
|
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added |
|
noise will be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. This parameter will be modulated by `strength`. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
strength=strength, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
def inpaint( |
|
self, |
|
image: Union[np.ndarray, PIL.Image.Image], |
|
mask_image: Union[np.ndarray, PIL.Image.Image], |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
): |
|
r""" |
|
Function for inpaint. |
|
Args: |
|
image (`np.ndarray` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. This is the image whose masked region will be inpainted. |
|
mask_image (`np.ndarray` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a |
|
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should |
|
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` |
|
is 1, the denoising process will be run on the masked area for the full number of iterations specified |
|
in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more |
|
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at |
|
the expense of slower inference. This parameter will be modulated by `strength`, as explained above. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
strength=strength, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|