Datasets:
Tasks:
Token Classification
License:
dinhquangson
commited on
Commit
•
c800c82
1
Parent(s):
b2b25d7
Update FUNSD.py
Browse files
FUNSD.py
CHANGED
@@ -36,6 +36,18 @@ def load_image(image_path):
|
|
36 |
image = image.transpose(2, 0, 1) # move channels to first dimension
|
37 |
return image, (w, h)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def normalize_bbox(bbox, size):
|
41 |
return [
|
@@ -72,12 +84,27 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
72 |
"id": datasets.Value("string"),
|
73 |
"tokens": datasets.Sequence(datasets.Value("string")),
|
74 |
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
75 |
-
"
|
76 |
datasets.features.ClassLabel(
|
77 |
names=["O", "B-HEADER", "I-HEADER", "B-QUESTION", "I-QUESTION", "B-ANSWER", "I-ANSWER"]
|
78 |
)
|
79 |
),
|
80 |
"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
}
|
82 |
),
|
83 |
supervised_keys=None,
|
@@ -104,8 +131,11 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
104 |
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
105 |
tokens = []
|
106 |
bboxes = []
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
109 |
file_path = os.path.join(ann_dir, file)
|
110 |
with open(file_path, "r", encoding="utf8") as f:
|
111 |
data = json.load(f)
|
@@ -115,20 +145,276 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
115 |
for item in data["form"]:
|
116 |
words, label = item["words"], item["label"]
|
117 |
words = [w for w in words if w["text"].strip() != ""]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
if len(words) == 0:
|
119 |
continue
|
120 |
if label == "other":
|
121 |
for w in words:
|
122 |
tokens.append(w["text"])
|
123 |
-
|
124 |
bboxes.append(normalize_bbox(w["box"], size))
|
125 |
else:
|
126 |
tokens.append(words[0]["text"])
|
127 |
-
|
128 |
bboxes.append(normalize_bbox(words[0]["box"], size))
|
129 |
for w in words[1:]:
|
130 |
tokens.append(w["text"])
|
131 |
-
|
132 |
bboxes.append(normalize_bbox(w["box"], size))
|
133 |
|
134 |
-
yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
image = image.transpose(2, 0, 1) # move channels to first dimension
|
37 |
return image, (w, h)
|
38 |
|
39 |
+
def simplify_bbox(bbox):
|
40 |
+
return [
|
41 |
+
min(bbox[0::2]),
|
42 |
+
min(bbox[1::2]),
|
43 |
+
max(bbox[2::2]),
|
44 |
+
max(bbox[3::2]),
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
def merge_bbox(bbox_list):
|
49 |
+
x0, y0, x1, y1 = list(zip(*bbox_list))
|
50 |
+
return [min(x0), min(y0), max(x1), max(y1)]
|
51 |
|
52 |
def normalize_bbox(bbox, size):
|
53 |
return [
|
|
|
84 |
"id": datasets.Value("string"),
|
85 |
"tokens": datasets.Sequence(datasets.Value("string")),
|
86 |
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
87 |
+
"labels": datasets.Sequence(
|
88 |
datasets.features.ClassLabel(
|
89 |
names=["O", "B-HEADER", "I-HEADER", "B-QUESTION", "I-QUESTION", "B-ANSWER", "I-ANSWER"]
|
90 |
)
|
91 |
),
|
92 |
"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
|
93 |
+
"entities": datasets.Sequence(
|
94 |
+
{
|
95 |
+
"start": datasets.Value("int64"),
|
96 |
+
"end": datasets.Value("int64"),
|
97 |
+
"label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]),
|
98 |
+
}
|
99 |
+
),
|
100 |
+
"relations": datasets.Sequence(
|
101 |
+
{
|
102 |
+
"head": datasets.Value("int64"),
|
103 |
+
"tail": datasets.Value("int64"),
|
104 |
+
"start_index": datasets.Value("int64"),
|
105 |
+
"end_index": datasets.Value("int64"),
|
106 |
+
}
|
107 |
+
),
|
108 |
}
|
109 |
),
|
110 |
supervised_keys=None,
|
|
|
131 |
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
132 |
tokens = []
|
133 |
bboxes = []
|
134 |
+
labels = []
|
135 |
+
entities = []
|
136 |
+
relations = []
|
137 |
+
entity_id_to_index_map = {}
|
138 |
+
empty_entity = set()
|
139 |
file_path = os.path.join(ann_dir, file)
|
140 |
with open(file_path, "r", encoding="utf8") as f:
|
141 |
data = json.load(f)
|
|
|
145 |
for item in data["form"]:
|
146 |
words, label = item["words"], item["label"]
|
147 |
words = [w for w in words if w["text"].strip() != ""]
|
148 |
+
relations.extend([tuple(sorted(l)) for l in item["linking"]])
|
149 |
+
tokenized_inputs = self.tokenizer(
|
150 |
+
item["text"],
|
151 |
+
add_special_tokens=False,
|
152 |
+
return_offsets_mapping=True,
|
153 |
+
return_attention_mask=False,
|
154 |
+
)
|
155 |
+
text_length = 0
|
156 |
+
ocr_length = 0
|
157 |
+
bbox = []
|
158 |
+
last_box = None
|
159 |
+
for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]):
|
160 |
+
if token_id == 6:
|
161 |
+
bbox.append(None)
|
162 |
+
continue
|
163 |
+
text_length += offset[1] - offset[0]
|
164 |
+
tmp_box = []
|
165 |
+
while ocr_length < text_length:
|
166 |
+
ocr_word = item["words"].pop(0)
|
167 |
+
ocr_length += len(
|
168 |
+
self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip())
|
169 |
+
)
|
170 |
+
tmp_box.append(simplify_bbox(ocr_word["box"]))
|
171 |
+
if len(tmp_box) == 0:
|
172 |
+
tmp_box = last_box
|
173 |
+
bbox.append(normalize_bbox(merge_bbox(tmp_box), size))
|
174 |
+
last_box = tmp_box
|
175 |
+
bbox = [
|
176 |
+
[bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b
|
177 |
+
for i, b in enumerate(bbox)
|
178 |
+
]
|
179 |
+
tokenized_inputs.update({"bbox": bbox, "labels": label})
|
180 |
+
if label[0] != "O":
|
181 |
+
entity_id_to_index_map[line["id"]] = len(entities)
|
182 |
+
entities.append(
|
183 |
+
{
|
184 |
+
"start": len(tokenized_doc["input_ids"]),
|
185 |
+
"end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]),
|
186 |
+
"label": line["label"].upper(),
|
187 |
+
}
|
188 |
+
)
|
189 |
+
|
190 |
+
for i in tokenized_doc:
|
191 |
+
tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i]
|
192 |
+
relations = list(set(relations))
|
193 |
+
relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity]
|
194 |
+
kvrelations = []
|
195 |
+
for rel in relations:
|
196 |
+
pair = [id2label[rel[0]], id2label[rel[1]]]
|
197 |
+
if pair == ["question", "answer"]:
|
198 |
+
kvrelations.append(
|
199 |
+
{"head": entity_id_to_index_map[rel[0]], "tail": entity_id_to_index_map[rel[1]]}
|
200 |
+
)
|
201 |
+
elif pair == ["answer", "question"]:
|
202 |
+
kvrelations.append(
|
203 |
+
{"head": entity_id_to_index_map[rel[1]], "tail": entity_id_to_index_map[rel[0]]}
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
continue
|
207 |
+
|
208 |
+
def get_relation_span(rel):
|
209 |
+
bound = []
|
210 |
+
for entity_index in [rel["head"], rel["tail"]]:
|
211 |
+
bound.append(entities[entity_index]["start"])
|
212 |
+
bound.append(entities[entity_index]["end"])
|
213 |
+
return min(bound), max(bound)
|
214 |
+
|
215 |
+
relations = sorted(
|
216 |
+
[
|
217 |
+
{
|
218 |
+
"head": rel["head"],
|
219 |
+
"tail": rel["tail"],
|
220 |
+
"start_index": get_relation_span(rel)[0],
|
221 |
+
"end_index": get_relation_span(rel)[1],
|
222 |
+
}
|
223 |
+
for rel in kvrelations
|
224 |
+
],
|
225 |
+
key=lambda x: x["head"],
|
226 |
+
)
|
227 |
+
chunk_size = 512
|
228 |
+
for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)):
|
229 |
+
item = {}
|
230 |
+
for k in tokenized_doc:
|
231 |
+
item[k] = tokenized_doc[k][index : index + chunk_size]
|
232 |
+
entities_in_this_span = []
|
233 |
+
global_to_local_map = {}
|
234 |
+
for entity_id, entity in enumerate(entities):
|
235 |
+
if (
|
236 |
+
index <= entity["start"] < index + chunk_size
|
237 |
+
and index <= entity["end"] < index + chunk_size
|
238 |
+
):
|
239 |
+
entity["start"] = entity["start"] - index
|
240 |
+
entity["end"] = entity["end"] - index
|
241 |
+
global_to_local_map[entity_id] = len(entities_in_this_span)
|
242 |
+
entities_in_this_span.append(entity)
|
243 |
+
relations_in_this_span = []
|
244 |
+
for relation in relations:
|
245 |
+
if (
|
246 |
+
index <= relation["start_index"] < index + chunk_size
|
247 |
+
and index <= relation["end_index"] < index + chunk_size
|
248 |
+
):
|
249 |
+
relations_in_this_span.append(
|
250 |
+
{
|
251 |
+
"head": global_to_local_map[relation["head"]],
|
252 |
+
"tail": global_to_local_map[relation["tail"]],
|
253 |
+
"start_index": relation["start_index"] - index,
|
254 |
+
"end_index": relation["end_index"] - index,
|
255 |
+
}
|
256 |
+
)
|
257 |
+
item.update(
|
258 |
+
{
|
259 |
+
"id": f"{doc['id']}_{chunk_id}",
|
260 |
+
"image": image,
|
261 |
+
"entities": entities_in_this_span,
|
262 |
+
"relations": relations_in_this_span,
|
263 |
+
}
|
264 |
+
)
|
265 |
if len(words) == 0:
|
266 |
continue
|
267 |
if label == "other":
|
268 |
for w in words:
|
269 |
tokens.append(w["text"])
|
270 |
+
labels.append("O")
|
271 |
bboxes.append(normalize_bbox(w["box"], size))
|
272 |
else:
|
273 |
tokens.append(words[0]["text"])
|
274 |
+
labels.append("B-" + label.upper())
|
275 |
bboxes.append(normalize_bbox(words[0]["box"], size))
|
276 |
for w in words[1:]:
|
277 |
tokens.append(w["text"])
|
278 |
+
labels.append("I-" + label.upper())
|
279 |
bboxes.append(normalize_bbox(w["box"], size))
|
280 |
|
281 |
+
yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "labels": labels, "image": image, "image": image, "image": image}logger.info("Generating examples from = %s", filepath)
|
282 |
+
ann_dir = os.path.join(filepath, "annotations")
|
283 |
+
img_dir = os.path.join(filepath, "images")
|
284 |
+
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
285 |
+
doc["img"]["fpath"] = os.path.join(filepath[1], doc["img"]["fname"])
|
286 |
+
image, size = load_image(doc["img"]["fpath"])
|
287 |
+
document = doc["document"]
|
288 |
+
tokenized_doc = {"input_ids": [], "bbox": [], "labels": []}
|
289 |
+
entities = []
|
290 |
+
relations = []
|
291 |
+
id2label = {}
|
292 |
+
entity_id_to_index_map = {}
|
293 |
+
empty_entity = set()
|
294 |
+
for line in document:
|
295 |
+
if len(line["text"]) == 0:
|
296 |
+
empty_entity.add(line["id"])
|
297 |
+
continue
|
298 |
+
id2label[line["id"]] = line["label"]
|
299 |
+
relations.extend([tuple(sorted(l)) for l in line["linking"]])
|
300 |
+
tokenized_inputs = self.tokenizer(
|
301 |
+
line["text"],
|
302 |
+
add_special_tokens=False,
|
303 |
+
return_offsets_mapping=True,
|
304 |
+
return_attention_mask=False,
|
305 |
+
)
|
306 |
+
text_length = 0
|
307 |
+
ocr_length = 0
|
308 |
+
bbox = []
|
309 |
+
last_box = None
|
310 |
+
for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]):
|
311 |
+
if token_id == 6:
|
312 |
+
bbox.append(None)
|
313 |
+
continue
|
314 |
+
text_length += offset[1] - offset[0]
|
315 |
+
tmp_box = []
|
316 |
+
while ocr_length < text_length:
|
317 |
+
ocr_word = line["words"].pop(0)
|
318 |
+
ocr_length += len(
|
319 |
+
self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip())
|
320 |
+
)
|
321 |
+
tmp_box.append(simplify_bbox(ocr_word["box"]))
|
322 |
+
if len(tmp_box) == 0:
|
323 |
+
tmp_box = last_box
|
324 |
+
bbox.append(normalize_bbox(merge_bbox(tmp_box), size))
|
325 |
+
last_box = tmp_box
|
326 |
+
bbox = [
|
327 |
+
[bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b
|
328 |
+
for i, b in enumerate(bbox)
|
329 |
+
]
|
330 |
+
if line["label"] == "other":
|
331 |
+
label = ["O"] * len(bbox)
|
332 |
+
else:
|
333 |
+
label = [f"I-{line['label'].upper()}"] * len(bbox)
|
334 |
+
label[0] = f"B-{line['label'].upper()}"
|
335 |
+
tokenized_inputs.update({"bbox": bbox, "labels": label})
|
336 |
+
if label[0] != "O":
|
337 |
+
entity_id_to_index_map[line["id"]] = len(entities)
|
338 |
+
entities.append(
|
339 |
+
{
|
340 |
+
"start": len(tokenized_doc["input_ids"]),
|
341 |
+
"end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]),
|
342 |
+
"label": line["label"].upper(),
|
343 |
+
}
|
344 |
+
)
|
345 |
+
for i in tokenized_doc:
|
346 |
+
tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i]
|
347 |
+
relations = list(set(relations))
|
348 |
+
relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity]
|
349 |
+
kvrelations = []
|
350 |
+
for rel in relations:
|
351 |
+
pair = [id2label[rel[0]], id2label[rel[1]]]
|
352 |
+
if pair == ["question", "answer"]:
|
353 |
+
kvrelations.append(
|
354 |
+
{"head": entity_id_to_index_map[rel[0]], "tail": entity_id_to_index_map[rel[1]]}
|
355 |
+
)
|
356 |
+
elif pair == ["answer", "question"]:
|
357 |
+
kvrelations.append(
|
358 |
+
{"head": entity_id_to_index_map[rel[1]], "tail": entity_id_to_index_map[rel[0]]}
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
continue
|
362 |
+
|
363 |
+
def get_relation_span(rel):
|
364 |
+
bound = []
|
365 |
+
for entity_index in [rel["head"], rel["tail"]]:
|
366 |
+
bound.append(entities[entity_index]["start"])
|
367 |
+
bound.append(entities[entity_index]["end"])
|
368 |
+
return min(bound), max(bound)
|
369 |
+
|
370 |
+
relations = sorted(
|
371 |
+
[
|
372 |
+
{
|
373 |
+
"head": rel["head"],
|
374 |
+
"tail": rel["tail"],
|
375 |
+
"start_index": get_relation_span(rel)[0],
|
376 |
+
"end_index": get_relation_span(rel)[1],
|
377 |
+
}
|
378 |
+
for rel in kvrelations
|
379 |
+
],
|
380 |
+
key=lambda x: x["head"],
|
381 |
+
)
|
382 |
+
chunk_size = 512
|
383 |
+
for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)):
|
384 |
+
item = {}
|
385 |
+
for k in tokenized_doc:
|
386 |
+
item[k] = tokenized_doc[k][index : index + chunk_size]
|
387 |
+
entities_in_this_span = []
|
388 |
+
global_to_local_map = {}
|
389 |
+
for entity_id, entity in enumerate(entities):
|
390 |
+
if (
|
391 |
+
index <= entity["start"] < index + chunk_size
|
392 |
+
and index <= entity["end"] < index + chunk_size
|
393 |
+
):
|
394 |
+
entity["start"] = entity["start"] - index
|
395 |
+
entity["end"] = entity["end"] - index
|
396 |
+
global_to_local_map[entity_id] = len(entities_in_this_span)
|
397 |
+
entities_in_this_span.append(entity)
|
398 |
+
relations_in_this_span = []
|
399 |
+
for relation in relations:
|
400 |
+
if (
|
401 |
+
index <= relation["start_index"] < index + chunk_size
|
402 |
+
and index <= relation["end_index"] < index + chunk_size
|
403 |
+
):
|
404 |
+
relations_in_this_span.append(
|
405 |
+
{
|
406 |
+
"head": global_to_local_map[relation["head"]],
|
407 |
+
"tail": global_to_local_map[relation["tail"]],
|
408 |
+
"start_index": relation["start_index"] - index,
|
409 |
+
"end_index": relation["end_index"] - index,
|
410 |
+
}
|
411 |
+
)
|
412 |
+
item.update(
|
413 |
+
{
|
414 |
+
"id": f"{doc['id']}_{chunk_id}",
|
415 |
+
"image": image,
|
416 |
+
"entities": entities_in_this_span,
|
417 |
+
"relations": relations_in_this_span,
|
418 |
+
}
|
419 |
+
)
|
420 |
+
yield f"{doc['id']}_{chunk_id}", item
|