Datasets:
Tasks:
Token Classification
License:
dinhquangson
commited on
Commit
•
d02b41c
1
Parent(s):
d7ac72c
Update FUNSD.py
Browse files
FUNSD.py
CHANGED
@@ -2,11 +2,13 @@
|
|
2 |
|
3 |
import json
|
4 |
import os
|
|
|
5 |
|
6 |
import datasets
|
7 |
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
|
|
10 |
from transformers import AutoTokenizer
|
11 |
|
12 |
logger = datasets.logging.get_logger(__name__)
|
@@ -27,14 +29,15 @@ _DESCRIPTION = """\
|
|
27 |
https://guillaumejaume.github.io/FUNSD/
|
28 |
"""
|
29 |
|
30 |
-
def load_image(image_path):
|
31 |
image = Image.open(image_path).convert("RGB")
|
32 |
w, h = image.size
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
38 |
return image, (w, h)
|
39 |
|
40 |
def simplify_bbox(bbox):
|
@@ -99,6 +102,14 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
99 |
"label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]),
|
100 |
}
|
101 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
"relations": datasets.Sequence(
|
103 |
{
|
104 |
"head": datasets.Value("int64"),
|
@@ -131,33 +142,33 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
131 |
ann_dir = os.path.join(filepath, "annotations")
|
132 |
img_dir = os.path.join(filepath, "images")
|
133 |
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
tokenized_doc = {"input_ids": [], "bbox": [], "labels": []}
|
138 |
entities = []
|
139 |
relations = []
|
|
|
140 |
id2label = {}
|
141 |
entity_id_to_index_map = {}
|
142 |
empty_entity = set()
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
image_path = image_path.replace("json", "png")
|
148 |
-
image, size = load_image(image_path)
|
149 |
-
for item in data["form"]:
|
150 |
-
words_example, label = item["words"], item["label"]
|
151 |
-
words_example = [w for w in words_example if w["text"].strip() != ""]
|
152 |
-
if len(words_example) == 0:
|
153 |
-
continue
|
154 |
-
if len(item["text"]) == 0:
|
155 |
-
empty_entity.add(item["id"])
|
156 |
continue
|
157 |
-
id2label[
|
158 |
-
relations.extend([tuple(sorted(l)) for l in
|
159 |
tokenized_inputs = self.tokenizer(
|
160 |
-
|
161 |
add_special_tokens=False,
|
162 |
return_offsets_mapping=True,
|
163 |
return_attention_mask=False,
|
@@ -165,6 +176,7 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
165 |
text_length = 0
|
166 |
ocr_length = 0
|
167 |
bbox = []
|
|
|
168 |
for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]):
|
169 |
if token_id == 6:
|
170 |
bbox.append(None)
|
@@ -172,7 +184,9 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
172 |
text_length += offset[1] - offset[0]
|
173 |
tmp_box = []
|
174 |
while ocr_length < text_length:
|
175 |
-
|
|
|
|
|
176 |
ocr_length += len(
|
177 |
self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip())
|
178 |
)
|
@@ -180,44 +194,28 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
180 |
if len(tmp_box) == 0:
|
181 |
tmp_box = last_box
|
182 |
bbox.append(normalize_bbox(merge_bbox(tmp_box), size))
|
183 |
-
last_box = tmp_box
|
184 |
-
|
185 |
bbox = [
|
186 |
[bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b
|
187 |
for i, b in enumerate(bbox)
|
188 |
]
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
if item["label"] == "other":
|
193 |
-
for w in words_example:
|
194 |
-
words.append(w["text"])
|
195 |
-
labels.append("O")
|
196 |
-
bboxes.append(normalize_bbox(w["box"], size))
|
197 |
-
#label = ["O"] * len(bbox)
|
198 |
else:
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
for w in words_example[1:]:
|
203 |
-
words.append(w["text"])
|
204 |
-
labels.append("I-" + item["label"].upper())
|
205 |
-
bboxes.append(normalize_bbox(w["box"], size))
|
206 |
-
#label = [f"I-{item['label'].upper()}"] * len(bbox)
|
207 |
-
#label[0] = f"B-{item['label'].upper()}"
|
208 |
-
|
209 |
if label[0] != "O":
|
210 |
-
entity_id_to_index_map[
|
211 |
-
entities.append(
|
212 |
{
|
213 |
-
"start": len(tokenized_doc["input_ids"]),
|
214 |
-
"end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]),
|
215 |
-
"label":
|
216 |
}
|
217 |
)
|
218 |
for i in tokenized_doc:
|
219 |
tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i]
|
220 |
-
|
221 |
relations = list(set(relations))
|
222 |
relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity]
|
223 |
kvrelations = []
|
@@ -255,12 +253,13 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
255 |
)
|
256 |
chunk_size = 512
|
257 |
for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)):
|
|
|
258 |
for k in tokenized_doc:
|
259 |
item[k] = tokenized_doc[k][index : index + chunk_size]
|
260 |
entities_in_this_span = []
|
261 |
global_to_local_map = {}
|
262 |
for entity_id, entity in enumerate(entities):
|
263 |
-
if (
|
264 |
index <= entity["start"] < index + chunk_size
|
265 |
and index <= entity["end"] < index + chunk_size
|
266 |
):
|
@@ -270,7 +269,7 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
270 |
entities_in_this_span.append(entity)
|
271 |
relations_in_this_span = []
|
272 |
for relation in relations:
|
273 |
-
if (
|
274 |
index <= relation["start_index"] < index + chunk_size
|
275 |
and index <= relation["end_index"] < index + chunk_size
|
276 |
):
|
@@ -282,5 +281,14 @@ class Funsd(datasets.GeneratorBasedBuilder):
|
|
282 |
"end_index": relation["end_index"] - index,
|
283 |
}
|
284 |
)
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
|
|
2 |
|
3 |
import json
|
4 |
import os
|
5 |
+
import logging
|
6 |
|
7 |
import datasets
|
8 |
|
9 |
from PIL import Image
|
10 |
import numpy as np
|
11 |
+
|
12 |
from transformers import AutoTokenizer
|
13 |
|
14 |
logger = datasets.logging.get_logger(__name__)
|
|
|
29 |
https://guillaumejaume.github.io/FUNSD/
|
30 |
"""
|
31 |
|
32 |
+
def load_image(image_path, size=None):
|
33 |
image = Image.open(image_path).convert("RGB")
|
34 |
w, h = image.size
|
35 |
+
if size is not None:
|
36 |
+
# resize image
|
37 |
+
image = image.resize((size, size))
|
38 |
+
image = np.asarray(image)
|
39 |
+
image = image[:, :, ::-1] # flip color channels from RGB to BGR
|
40 |
+
image = image.transpose(2, 0, 1) # move channels to first dimension
|
41 |
return image, (w, h)
|
42 |
|
43 |
def simplify_bbox(bbox):
|
|
|
102 |
"label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]),
|
103 |
}
|
104 |
),
|
105 |
+
"original_image": datasets.features.Image(),
|
106 |
+
"entities": datasets.Sequence(
|
107 |
+
{
|
108 |
+
"start": datasets.Value("int64"),
|
109 |
+
"end": datasets.Value("int64"),
|
110 |
+
"label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]),
|
111 |
+
}
|
112 |
+
),
|
113 |
"relations": datasets.Sequence(
|
114 |
{
|
115 |
"head": datasets.Value("int64"),
|
|
|
142 |
ann_dir = os.path.join(filepath, "annotations")
|
143 |
img_dir = os.path.join(filepath, "images")
|
144 |
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
145 |
+
doc_id = file.split(".")[0]
|
146 |
+
file_path = os.path.join(ann_dir, file)
|
147 |
+
with open(file_path, "r", encoding="utf8") as f:
|
148 |
+
document = json.load(f)
|
149 |
+
image_path = os.path.join(img_dir, file)
|
150 |
+
image_path = image_path.replace("json", "png")
|
151 |
+
image, size = load_image(image_path, size=224)
|
152 |
+
original_image, _ = load_image(image_path)
|
153 |
+
|
154 |
+
|
155 |
+
document = document["form"]
|
156 |
tokenized_doc = {"input_ids": [], "bbox": [], "labels": []}
|
157 |
entities = []
|
158 |
relations = []
|
159 |
+
# image id to label dict
|
160 |
id2label = {}
|
161 |
entity_id_to_index_map = {}
|
162 |
empty_entity = set()
|
163 |
+
for line in document:
|
164 |
+
# word navako text lai empty_entity ma add garne
|
165 |
+
if len(line["text"]) == 0:
|
166 |
+
empty_entity.add(line["id"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
continue
|
168 |
+
id2label[line["id"]] = line["label"]
|
169 |
+
relations.extend([tuple(sorted(l)) for l in line["linking"]])
|
170 |
tokenized_inputs = self.tokenizer(
|
171 |
+
line["text"],
|
172 |
add_special_tokens=False,
|
173 |
return_offsets_mapping=True,
|
174 |
return_attention_mask=False,
|
|
|
176 |
text_length = 0
|
177 |
ocr_length = 0
|
178 |
bbox = []
|
179 |
+
last_box = None
|
180 |
for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]):
|
181 |
if token_id == 6:
|
182 |
bbox.append(None)
|
|
|
184 |
text_length += offset[1] - offset[0]
|
185 |
tmp_box = []
|
186 |
while ocr_length < text_length:
|
187 |
+
if len(line["words"]) == 0:
|
188 |
+
break
|
189 |
+
ocr_word = line["words"].pop(0)
|
190 |
ocr_length += len(
|
191 |
self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip())
|
192 |
)
|
|
|
194 |
if len(tmp_box) == 0:
|
195 |
tmp_box = last_box
|
196 |
bbox.append(normalize_bbox(merge_bbox(tmp_box), size))
|
197 |
+
last_box = tmp_box
|
|
|
198 |
bbox = [
|
199 |
[bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b
|
200 |
for i, b in enumerate(bbox)
|
201 |
]
|
202 |
+
if line["label"] == "other":
|
203 |
+
label = ["O"] * len(bbox)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
else:
|
205 |
+
label = [f"I-{line['label'].upper()}"] * len(bbox)
|
206 |
+
label[0] = f"B-{line['label'].upper()}"
|
207 |
+
tokenized_inputs.update({"bbox": bbox, "labels": label})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
if label[0] != "O":
|
209 |
+
entity_id_to_index_map[line["id"]] = len(entities)
|
210 |
+
entities.append( # determine the number of tokens wiithin the text and their start and end index
|
211 |
{
|
212 |
+
"start": len(tokenized_doc["input_ids"]), # start index of the token of text. eg for text hello world having token hello world, it is 0
|
213 |
+
"end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]), # end index of the token of text. This will be 2 for hello world.
|
214 |
+
"label": line["label"].upper(), # label of the text
|
215 |
}
|
216 |
)
|
217 |
for i in tokenized_doc:
|
218 |
tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i]
|
|
|
219 |
relations = list(set(relations))
|
220 |
relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity]
|
221 |
kvrelations = []
|
|
|
253 |
)
|
254 |
chunk_size = 512
|
255 |
for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)):
|
256 |
+
item = {}
|
257 |
for k in tokenized_doc:
|
258 |
item[k] = tokenized_doc[k][index : index + chunk_size]
|
259 |
entities_in_this_span = []
|
260 |
global_to_local_map = {}
|
261 |
for entity_id, entity in enumerate(entities):
|
262 |
+
if ( # yo condition garda yedi text ko ek part euta chunk ra baki arko chunk ma aayo vane k garne?
|
263 |
index <= entity["start"] < index + chunk_size
|
264 |
and index <= entity["end"] < index + chunk_size
|
265 |
):
|
|
|
269 |
entities_in_this_span.append(entity)
|
270 |
relations_in_this_span = []
|
271 |
for relation in relations:
|
272 |
+
if ( # yo condition garda yedi question euta chunk ra answer arko chunk ma aayo vane k garne?
|
273 |
index <= relation["start_index"] < index + chunk_size
|
274 |
and index <= relation["end_index"] < index + chunk_size
|
275 |
):
|
|
|
281 |
"end_index": relation["end_index"] - index,
|
282 |
}
|
283 |
)
|
284 |
+
item.update(
|
285 |
+
{
|
286 |
+
"id": f"{doc_id}_{chunk_id}",
|
287 |
+
"image": image,
|
288 |
+
"original_image": original_image,
|
289 |
+
"entities": entities_in_this_span,
|
290 |
+
"relations": relations_in_this_span,
|
291 |
+
}
|
292 |
+
)
|
293 |
+
yield f"{doc_id}_{chunk_id}", item
|
294 |
|