--- license: cc-by-4.0 task_categories: - automatic-speech-recognition language: - en -pretty_name: AMI SDM --- # Distil Whisper: AMI SDM This is a variant of the [AMI SDM](https://huggingface.co/datasets/edinburghstr/ami) dataset, augmented to return the pseudo-labelled Whisper Transcriptions alongside the original dataset elements. The pseudo-labelled transcriptions were generated by labelling the input audio data with the Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2) model with *greedy* sampling. For information on how the original dataset was curated, refer to the original [dataset card](https://huggingface.co/datasets/edinburghstr/ami). ## Standalone Usage First, install the latest version of the 🤗 Datasets package: ```bash pip install --upgrade pip pip install --upgrade datasets[audio] ``` The dataset can be downloaded and pre-processed on disk using the [`load_dataset`](https://huggingface.co/docs/datasets/v2.14.5/en/package_reference/loading_methods#datasets.load_dataset) function: ```python from datasets import load_dataset dataset = load_dataset("distil-whisper/ami-sdm", "sdm") # take the first sample of the validation set sample = dataset["validation"][0] ``` It can also be streamed directly from the Hub using Datasets' [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet). Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk: ```python from datasets import load_dataset dataset = load_dataset("distil-whisper/ami-sdm", "sdm", streaming=True) # take the first sample of the validation set sample = next(iter(dataset["validation"])) ``` ## Distil Whisper Usage To use this dataset to reproduce a Distil Whisper training run, refer to the instructions on the [Distil Whisper repository](https://github.com/huggingface/distil-whisper#training). ## License This dataset is licensed under cc-by-4.0.