Commit
•
89d79c0
1
Parent(s):
ec52119
up
Browse files- peoples_speech-clean.py +25 -3
peoples_speech-clean.py
CHANGED
@@ -72,6 +72,10 @@ _N_SHARDS_URL = _BASE_URL + "n_shards.json"
|
|
72 |
# relative path to metadata inside dataset's repo
|
73 |
_MANIFEST_URL = _BASE_URL + "{split}/{config}.json"
|
74 |
|
|
|
|
|
|
|
|
|
75 |
|
76 |
class PeoplesSpeechConfig(datasets.BuilderConfig):
|
77 |
|
@@ -104,6 +108,7 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
104 |
"audio": datasets.Audio(sampling_rate=16_000),
|
105 |
"duration_ms": datasets.Value("int32"),
|
106 |
"text": datasets.Value("string"),
|
|
|
107 |
}
|
108 |
),
|
109 |
task_templates=[AutomaticSpeechRecognition()],
|
@@ -113,6 +118,8 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
113 |
)
|
114 |
|
115 |
def _split_generators(self, dl_manager):
|
|
|
|
|
116 |
|
117 |
if self.config.name == "microset":
|
118 |
# take only first data archive for demo purposes
|
@@ -157,13 +164,16 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
157 |
# In non-streaming mode, we extract the archives to have the data locally:
|
158 |
local_extracted_archive_paths = dl_manager.extract(audio_archive_paths) \
|
159 |
if not dl_manager.is_streaming else \
|
160 |
-
{split: [None] * len(audio_archive_paths) for split in splits_to_configs}
|
161 |
|
162 |
manifest_urls = {
|
163 |
split: _MANIFEST_URL.format(split=split, config=config) for split, config in splits_to_configs.items()
|
164 |
}
|
165 |
manifest_paths = dl_manager.download_and_extract(manifest_urls)
|
166 |
|
|
|
|
|
|
|
167 |
# To access the audio data from the TAR archives using the download manager,
|
168 |
# we have to use the dl_manager.iter_archive method
|
169 |
#
|
@@ -188,13 +198,14 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
188 |
# use iter_archive here to access the files in the TAR archives:
|
189 |
"archives": [dl_manager.iter_archive(path) for path in audio_archive_paths[split]],
|
190 |
"manifest_path": manifest_paths[split],
|
|
|
191 |
}
|
192 |
)
|
193 |
)
|
194 |
|
195 |
return split_generators
|
196 |
|
197 |
-
def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path):
|
198 |
meta = dict()
|
199 |
with open(manifest_path, "r", encoding="utf-8") as f:
|
200 |
for line in tqdm(f, desc="reading metadata file"):
|
@@ -211,6 +222,15 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
211 |
"duration_ms": duration
|
212 |
}
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
|
215 |
# Here we iterate over all the files within the TAR archive:
|
216 |
for audio_filename, audio_file in archive:
|
@@ -223,5 +243,7 @@ class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
|
223 |
"id": audio_filename,
|
224 |
"audio": {"path": path, "bytes": audio_file.read()},
|
225 |
"text": meta[audio_filename]["text"],
|
226 |
-
"duration_ms": meta[audio_filename]["duration_ms"]
|
|
|
227 |
}
|
|
|
|
72 |
# relative path to metadata inside dataset's repo
|
73 |
_MANIFEST_URL = _BASE_URL + "{split}/{config}.json"
|
74 |
|
75 |
+
_WHISPER_TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/peoples_speech-clean/resolve/main/transcription_data/greedy_search/"
|
76 |
+
|
77 |
+
_WHISPER_TRANSCRIPT_URLs = _WHISPER_TRANSCRIPT_URL + "/{split}-transcription.txt"
|
78 |
+
|
79 |
|
80 |
class PeoplesSpeechConfig(datasets.BuilderConfig):
|
81 |
|
|
|
108 |
"audio": datasets.Audio(sampling_rate=16_000),
|
109 |
"duration_ms": datasets.Value("int32"),
|
110 |
"text": datasets.Value("string"),
|
111 |
+
"whisper_transcript": datasets.Value("string"),
|
112 |
}
|
113 |
),
|
114 |
task_templates=[AutomaticSpeechRecognition()],
|
|
|
118 |
)
|
119 |
|
120 |
def _split_generators(self, dl_manager):
|
121 |
+
if self.config.name not in ["clean", "validation", "test"]:
|
122 |
+
raise ValueError("This dataset is only compatible with the `clean` config.")
|
123 |
|
124 |
if self.config.name == "microset":
|
125 |
# take only first data archive for demo purposes
|
|
|
164 |
# In non-streaming mode, we extract the archives to have the data locally:
|
165 |
local_extracted_archive_paths = dl_manager.extract(audio_archive_paths) \
|
166 |
if not dl_manager.is_streaming else \
|
167 |
+
{split: [None] * len(audio_archive_paths[split]) for split in splits_to_configs}
|
168 |
|
169 |
manifest_urls = {
|
170 |
split: _MANIFEST_URL.format(split=split, config=config) for split, config in splits_to_configs.items()
|
171 |
}
|
172 |
manifest_paths = dl_manager.download_and_extract(manifest_urls)
|
173 |
|
174 |
+
transcription_urls = {split: _WHISPER_TRANSCRIPT_URLs.format(split=split) for split in splits_to_configs}
|
175 |
+
transcript_archive_path = dl_manager.download(transcription_urls)
|
176 |
+
|
177 |
# To access the audio data from the TAR archives using the download manager,
|
178 |
# we have to use the dl_manager.iter_archive method
|
179 |
#
|
|
|
198 |
# use iter_archive here to access the files in the TAR archives:
|
199 |
"archives": [dl_manager.iter_archive(path) for path in audio_archive_paths[split]],
|
200 |
"manifest_path": manifest_paths[split],
|
201 |
+
"whisper_transcript": transcript_archive_path[split],
|
202 |
}
|
203 |
)
|
204 |
)
|
205 |
|
206 |
return split_generators
|
207 |
|
208 |
+
def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path, whisper_transcript):
|
209 |
meta = dict()
|
210 |
with open(manifest_path, "r", encoding="utf-8") as f:
|
211 |
for line in tqdm(f, desc="reading metadata file"):
|
|
|
222 |
"duration_ms": duration
|
223 |
}
|
224 |
|
225 |
+
whisper_transcripts = []
|
226 |
+
|
227 |
+
with open(whisper_transcript, encoding="utf-8") as f:
|
228 |
+
for row in f:
|
229 |
+
whisper_transcripts.append(row.rstrip("\n"))
|
230 |
+
|
231 |
+
idx = 0
|
232 |
+
|
233 |
+
|
234 |
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
|
235 |
# Here we iterate over all the files within the TAR archive:
|
236 |
for audio_filename, audio_file in archive:
|
|
|
243 |
"id": audio_filename,
|
244 |
"audio": {"path": path, "bytes": audio_file.read()},
|
245 |
"text": meta[audio_filename]["text"],
|
246 |
+
"duration_ms": meta[audio_filename]["duration_ms"],
|
247 |
+
"whisper_transcript": whisper_transcripts[idx],
|
248 |
}
|
249 |
+
idx += 1
|