File size: 6,886 Bytes
575441a 8e74f40 3144062 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 575441a 693cf23 575441a 8e74f40 575441a 8e74f40 575441a 8e74f40 693cf23 8e74f40 693cf23 8e74f40 693cf23 8e74f40 575441a 8e74f40 3144062 693cf23 db6c031 3144062 693cf23 8e74f40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Copyright 2022 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The TEDLIUM dataset for automatic speech recognition."""
import csv
import datasets
from datasets.tasks import AutomaticSpeechRecognition
from huggingface_hub import list_repo_files
import pyarrow.parquet as pq
import pyarrow as pa
_DESCRIPTION = """\
The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech.
"""
_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC97S62"
_LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
_DATA_REPO_ID = "sanchit-gandhi/tedlium-data"
_WHISPER_TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/whisper_transcriptions_greedy/resolve/main/tedlium"
_WHISPER_TRANSCRIPT_URLs = _WHISPER_TRANSCRIPT_URL + "/{split}-transcription.csv"
class TedLium(datasets.ArrowBasedBuilder):
"""The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech."""
VERSION = datasets.Version("1.1.0")
# This version of the dataset is hard-coded to work with release3 and release3 only.
DEFAULT_CONFIG_NAME = "release3"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="release3", version=VERSION, description=_DESCRIPTION),
]
def _info(self):
features = datasets.Features(
{
"audio": datasets.features.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]),
"file": datasets.Value("string"),
"id": datasets.Value("string"),
"whisper_transcript": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("audio", "text"),
homepage=_HOMEPAGE,
license=_LICENSE,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager):
data_repo_download = f"https://huggingface.co/datasets/{_DATA_REPO_ID}/resolve/main/"
all_files = list_repo_files(_DATA_REPO_ID, repo_type="dataset")
train_files = [file for file in all_files if file.startswith("data/train")]
validation_files = [file for file in all_files if file.startswith("data/validation")]
test_files = [file for file in all_files if file.startswith("data/test")]
split_to_ids = {
"train": train_files,
"validation": validation_files,
"test": test_files,
}
dl_urls = {}
for split, split_ids in split_to_ids.items():
dl_urls[split] = [data_repo_download + source_id for source_id in split_ids]
archive_paths = dl_manager.download(dl_urls)
local_extracted_archive_paths = (
dl_manager.extract(archive_paths)
if not dl_manager.is_streaming
else {split: [None] * len(archive_paths[split]) for split in split_to_ids}
)
transcription_urls = {split: _WHISPER_TRANSCRIPT_URLs.format(split=split.replace(".", "-")) for split in split_to_ids}
transcript_archive_path = dl_manager.download(transcription_urls)
train_split = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths["train"],
"archives": [dl_manager.iter_files(path) for path in archive_paths["train"]],
"whisper_transcript": transcript_archive_path["train"],
},
),
]
dev_split = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths["validation"],
"archives": [dl_manager.iter_files(path) for path in archive_paths["validation"]],
"whisper_transcript": transcript_archive_path["validation"],
},
),
]
test_split = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths["test"],
"archives": [dl_manager.iter_files(path) for path in archive_paths["test"]],
"whisper_transcript": transcript_archive_path["test"],
},
),
]
return train_split + dev_split + test_split
def _generate_tables(self, local_extracted_archive_paths, archives, whisper_transcript):
whisper_transcriptions = dict()
with open(whisper_transcript, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter=",")
for line in reader:
whisper_transcriptions[line["file_id"]] = line["whisper_transcript"]
idx = 0
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
# Here we iterate over all the files within the TAR archive:
for audio_file in archive:
with open(audio_file, "rb") as f:
pf = pq.ParquetFile(f)
for record_batch in pf.iter_batches():
pa_table = pa.Table.from_batches([record_batch])
batch_whisper_transcript = []
for text, file_id in zip(pa_table["text"], pa_table["id"]):
transcription = whisper_transcriptions.get(str(file_id), None)
batch_whisper_transcript.append(transcription if str(text) != "ignore_time_segment_in_scoring" else "ignore_time_segment_in_scoring")
batch_whisper_transcript = pa.array(batch_whisper_transcript, pa.string())
pa_table = pa_table.append_column("whisper_transcript", batch_whisper_transcript)
yield idx, pa_table
idx += 1
|