# Copyright 2022 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The TEDLIUM dataset for automatic speech recognition.""" import csv import datasets from datasets.tasks import AutomaticSpeechRecognition from huggingface_hub import list_repo_files import pyarrow.parquet as pq import pyarrow as pa _DESCRIPTION = """\ The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech. """ _HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC97S62" _LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)" _DATA_REPO_ID = "sanchit-gandhi/tedlium-data" _WHISPER_TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/whisper_transcriptions_greedy/resolve/main/tedlium" _WHISPER_TRANSCRIPT_URLs = _WHISPER_TRANSCRIPT_URL + "/{split}-transcription.csv" class TedLium(datasets.ArrowBasedBuilder): """The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech.""" VERSION = datasets.Version("1.1.0") # This version of the dataset is hard-coded to work with release3 and release3 only. DEFAULT_CONFIG_NAME = "release3" BUILDER_CONFIGS = [ datasets.BuilderConfig(name="release3", version=VERSION, description=_DESCRIPTION), ] def _info(self): features = datasets.Features( { "audio": datasets.features.Audio(sampling_rate=16_000), "text": datasets.Value("string"), "speaker_id": datasets.Value("string"), "gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]), "file": datasets.Value("string"), "id": datasets.Value("string"), "whisper_transcript": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("audio", "text"), homepage=_HOMEPAGE, license=_LICENSE, task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], ) def _split_generators(self, dl_manager): data_repo_download = f"https://huggingface.co/datasets/{_DATA_REPO_ID}/resolve/main/" all_files = list_repo_files(_DATA_REPO_ID, repo_type="dataset") train_files = [file for file in all_files if file.startswith("data/train")] validation_files = [file for file in all_files if file.startswith("data/validation")] test_files = [file for file in all_files if file.startswith("data/test")] split_to_ids = { "train": train_files, "validation": validation_files, "test": test_files, } dl_urls = {} for split, split_ids in split_to_ids.items(): dl_urls[split] = [data_repo_download + source_id for source_id in split_ids] archive_paths = dl_manager.download(dl_urls) local_extracted_archive_paths = ( dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {split: [None] * len(archive_paths[split]) for split in split_to_ids} ) transcription_urls = {split: _WHISPER_TRANSCRIPT_URLs.format(split=split.replace(".", "-")) for split in split_to_ids} transcript_archive_path = dl_manager.download(transcription_urls) train_split = [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths["train"], "archives": [dl_manager.iter_files(path) for path in archive_paths["train"]], "whisper_transcript": transcript_archive_path["train"], }, ), ] dev_split = [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths["validation"], "archives": [dl_manager.iter_files(path) for path in archive_paths["validation"]], "whisper_transcript": transcript_archive_path["validation"], }, ), ] test_split = [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths["test"], "archives": [dl_manager.iter_files(path) for path in archive_paths["test"]], "whisper_transcript": transcript_archive_path["test"], }, ), ] return train_split + dev_split + test_split def _generate_tables(self, local_extracted_archive_paths, archives, whisper_transcript): whisper_transcriptions = dict() with open(whisper_transcript, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter=",") for line in reader: whisper_transcriptions[line["file_id"]] = line["whisper_transcript"] idx = 0 for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives): # Here we iterate over all the files within the TAR archive: for audio_file in archive: with open(audio_file, "rb") as f: pf = pq.ParquetFile(f) for record_batch in pf.iter_batches(): pa_table = pa.Table.from_batches([record_batch]) batch_whisper_transcript = [] for text, file_id in zip(pa_table["text"], pa_table["id"]): transcription = whisper_transcriptions.get(str(file_id), None) batch_whisper_transcript.append(transcription if str(text) != "ignore_time_segment_in_scoring" else "ignore_time_segment_in_scoring") batch_whisper_transcript = pa.array(batch_whisper_transcript, pa.string()) pa_table = pa_table.append_column("whisper_transcript", batch_whisper_transcript) yield idx, pa_table idx += 1