modelId
stringlengths 4
112
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 21
values | files
sequence | publishedBy
stringlengths 2
37
| downloads_last_month
int32 0
9.44M
| library
stringclasses 15
values | modelCard
large_stringlengths 0
100k
|
---|---|---|---|---|---|---|---|---|
albert-base-v1 | 2021-01-13T15:08:24.000Z | [
"pytorch",
"tf",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"exbert",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 7,474 | transformers | ---
tags:
- exbert
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT Base v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"▁modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"▁modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"▁model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"▁runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"▁lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1')
model = AlbertModel.from_pretrained("albert-base-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1')
model = TFAlbertModel.from_pretrained("albert-base-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"▁shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"▁blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"▁lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"▁receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"▁paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"▁waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=albert-base-v1">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
albert-base-v2 | 2021-01-13T15:06:44.000Z | [
"pytorch",
"tf",
"rust",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 218,776 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT Base v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"▁modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"▁modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"▁model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"▁runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"▁lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertModel.from_pretrained("albert-base-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2'')
model = TFAlbertModel.from_pretrained("albert-base-v2)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"▁shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"▁blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"▁lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"▁receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"▁paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"▁waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
albert-large-v1 | 2021-01-13T15:29:06.000Z | [
"pytorch",
"tf",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 768 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT Large v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the large model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 1024 hidden dimension
- 16 attention heads
- 17M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v1')
model = AlbertModel.from_pretrained("albert-large-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v1')
model = TFAlbertModel.from_pretrained("albert-large-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
albert-large-v2 | 2021-01-13T15:35:47.000Z | [
"pytorch",
"tf",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 7,831 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT Large v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the large model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 1024 hidden dimension
- 16 attention heads
- 17M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v2')
model = AlbertModel.from_pretrained("albert-large-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v2')
model = TFAlbertModel.from_pretrained("albert-large-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
albert-xlarge-v1 | 2021-01-13T15:30:39.000Z | [
"pytorch",
"tf",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 242 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT XLarge v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the xlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 2048 hidden dimension
- 16 attention heads
- 58M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v1')
model = AlbertModel.from_pretrained("albert-xlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v1')
model = TFAlbertModel.from_pretrained("albert-xlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
albert-xlarge-v2 | 2021-01-13T15:34:57.000Z | [
"pytorch",
"tf",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 4,934 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT XLarge v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the xlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 2048 hidden dimension
- 16 attention heads
- 58M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v2')
model = AlbertModel.from_pretrained("albert-xlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v2')
model = TFAlbertModel.from_pretrained("albert-xlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
albert-xxlarge-v1 | 2021-01-13T15:32:02.000Z | [
"pytorch",
"tf",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 498 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT XXLarge v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the xxlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 4096 hidden dimension
- 64 attention heads
- 223M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v1')
model = AlbertModel.from_pretrained("albert-xxlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v1')
model = TFAlbertModel.from_pretrained("albert-xxlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
albert-xxlarge-v2 | 2021-01-13T15:33:03.000Z | [
"pytorch",
"tf",
"albert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"exbert",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json",
"with-prefix-tf_model.h5"
] | huggingface | 33,017 | transformers | ---
tags:
- exbert
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# ALBERT XXLarge v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the xxlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 4096 hidden dimension
- 64 attention heads
- 223M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')
model = AlbertModel.from_pretrained("albert-xxlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')
model = TFAlbertModel.from_pretrained("albert-xxlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=albert-xxlarge-v2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a> |
bert-base-cased-finetuned-mrpc | 2021-05-18T16:08:38.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 27,304 | transformers | |
bert-base-cased | 2021-05-18T16:12:11.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"exbert",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 1,975,177 | transformers | ---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT base model (cased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between
english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-cased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] Hello I'm a fashion model. [SEP]",
'score': 0.09019174426794052,
'token': 4633,
'token_str': 'fashion'},
{'sequence': "[CLS] Hello I'm a new model. [SEP]",
'score': 0.06349995732307434,
'token': 1207,
'token_str': 'new'},
{'sequence': "[CLS] Hello I'm a male model. [SEP]",
'score': 0.06228214129805565,
'token': 2581,
'token_str': 'male'},
{'sequence': "[CLS] Hello I'm a professional model. [SEP]",
'score': 0.0441727414727211,
'token': 1848,
'token_str': 'professional'},
{'sequence': "[CLS] Hello I'm a super model. [SEP]",
'score': 0.03326151892542839,
'token': 7688,
'token_str': 'super'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertModel.from_pretrained("bert-base-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = BertModel.from_pretrained("bert-base-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-cased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] The man worked as a lawyer. [SEP]',
'score': 0.04804691672325134,
'token': 4545,
'token_str': 'lawyer'},
{'sequence': '[CLS] The man worked as a waiter. [SEP]',
'score': 0.037494491785764694,
'token': 17989,
'token_str': 'waiter'},
{'sequence': '[CLS] The man worked as a cop. [SEP]',
'score': 0.035512614995241165,
'token': 9947,
'token_str': 'cop'},
{'sequence': '[CLS] The man worked as a detective. [SEP]',
'score': 0.031271643936634064,
'token': 9140,
'token_str': 'detective'},
{'sequence': '[CLS] The man worked as a doctor. [SEP]',
'score': 0.027423162013292313,
'token': 3995,
'token_str': 'doctor'}]
>>> unmasker("The woman worked as a [MASK].")
[{'sequence': '[CLS] The woman worked as a nurse. [SEP]',
'score': 0.16927455365657806,
'token': 7439,
'token_str': 'nurse'},
{'sequence': '[CLS] The woman worked as a waitress. [SEP]',
'score': 0.1501094549894333,
'token': 15098,
'token_str': 'waitress'},
{'sequence': '[CLS] The woman worked as a maid. [SEP]',
'score': 0.05600163713097572,
'token': 13487,
'token_str': 'maid'},
{'sequence': '[CLS] The woman worked as a housekeeper. [SEP]',
'score': 0.04838843643665314,
'token': 26458,
'token_str': 'housekeeper'},
{'sequence': '[CLS] The woman worked as a cook. [SEP]',
'score': 0.029980547726154327,
'token': 9834,
'token_str': 'cook'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
|:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
| | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=bert-base-cased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
bert-base-chinese | 2021-05-18T16:13:18.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"zh",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 1,354,537 | transformers | ---
language: zh
---
|
bert-base-german-cased | 2021-05-18T16:14:28.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"de",
"transformers",
"license:mit",
"exbert",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 95,565 | transformers | ---
language: de
license: mit
thumbnail: https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png
tags:
- exbert
---
<a href="https://huggingface.co/exbert/?model=bert-base-german-cased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
# German BERT
![bert_image](https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png)
## Overview
**Language model:** bert-base-cased
**Language:** German
**Training data:** Wiki, OpenLegalData, News (~ 12GB)
**Eval data:** Conll03 (NER), GermEval14 (NER), GermEval18 (Classification), GNAD (Classification)
**Infrastructure**: 1x TPU v2
**Published**: Jun 14th, 2019
**Update April 3rd, 2020**: we updated the vocabulary file on deepset's s3 to conform with the default tokenization of punctuation tokens.
For details see the related [FARM issue](https://github.com/deepset-ai/FARM/issues/60). If you want to use the old vocab we have also uploaded a ["deepset/bert-base-german-cased-oldvocab"](https://huggingface.co/deepset/bert-base-german-cased-oldvocab) model.
## Details
- We trained using Google's Tensorflow code on a single cloud TPU v2 with standard settings.
- We trained 810k steps with a batch size of 1024 for sequence length 128 and 30k steps with sequence length 512. Training took about 9 days.
- As training data we used the latest German Wikipedia dump (6GB of raw txt files), the OpenLegalData dump (2.4 GB) and news articles (3.6 GB).
- We cleaned the data dumps with tailored scripts and segmented sentences with spacy v2.1. To create tensorflow records we used the recommended sentencepiece library for creating the word piece vocabulary and tensorflow scripts to convert the text to data usable by BERT.
See https://deepset.ai/german-bert for more details
## Hyperparameters
```
batch_size = 1024
n_steps = 810_000
max_seq_len = 128 (and 512 later)
learning_rate = 1e-4
lr_schedule = LinearWarmup
num_warmup_steps = 10_000
```
## Performance
During training we monitored the loss and evaluated different model checkpoints on the following German datasets:
- germEval18Fine: Macro f1 score for multiclass sentiment classification
- germEval18coarse: Macro f1 score for binary sentiment classification
- germEval14: Seq f1 score for NER (file names deuutf.\*)
- CONLL03: Seq f1 score for NER
- 10kGNAD: Accuracy for document classification
Even without thorough hyperparameter tuning, we observed quite stable learning especially for our German model. Multiple restarts with different seeds produced quite similar results.
![performancetable](https://thumb.tildacdn.com/tild3162-6462-4566-b663-376630376138/-/format/webp/Screenshot_from_2020.png)
We further evaluated different points during the 9 days of pre-training and were astonished how fast the model converges to the maximally reachable performance. We ran all 5 downstream tasks on 7 different model checkpoints - taken at 0 up to 840k training steps (x-axis in figure below). Most checkpoints are taken from early training where we expected most performance changes. Surprisingly, even a randomly initialized BERT can be trained only on labeled downstream datasets and reach good performance (blue line, GermEval 2018 Coarse task, 795 kB trainset size).
![checkpointseval](https://thumb.tildacdn.com/tild6335-3531-4137-b533-313365663435/-/format/webp/deepset_checkpoints.png)
## Authors
- Branden Chan: `branden.chan [at] deepset.ai`
- Timo Möller: `timo.moeller [at] deepset.ai`
- Malte Pietsch: `malte.pietsch [at] deepset.ai`
- Tanay Soni: `tanay.soni [at] deepset.ai`
## About us
![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
Some of our work:
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [FARM](https://github.com/deepset-ai/FARM)
- [Haystack](https://github.com/deepset-ai/haystack/)
Get in touch:
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
bert-base-german-dbmdz-cased | 2021-05-18T16:15:21.000Z | [
"pytorch",
"jax",
"bert",
"masked-lm",
"de",
"transformers",
"license:mit",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 2,198 | transformers | ---
language: de
license: mit
---
|
bert-base-german-dbmdz-uncased | 2021-05-18T16:16:25.000Z | [
"pytorch",
"jax",
"bert",
"masked-lm",
"de",
"transformers",
"license:mit",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 39,983 | transformers | ---
language: de
license: mit
---
|
bert-base-multilingual-cased | 2021-05-18T16:18:16.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"multilingual",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 649,885 | transformers | ---
language: multilingual
license: apache-2.0
datasets:
- wikipedia
---
# BERT multilingual base model (cased)
Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the languages in the training set that can then be used to
extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
standard classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] Hello I'm a model model. [SEP]",
'score': 0.10182085633277893,
'token': 13192,
'token_str': 'model'},
{'sequence': "[CLS] Hello I'm a world model. [SEP]",
'score': 0.052126359194517136,
'token': 11356,
'token_str': 'world'},
{'sequence': "[CLS] Hello I'm a data model. [SEP]",
'score': 0.048930276185274124,
'token': 11165,
'token_str': 'data'},
{'sequence': "[CLS] Hello I'm a flight model. [SEP]",
'score': 0.02036019042134285,
'token': 23578,
'token_str': 'flight'},
{'sequence': "[CLS] Hello I'm a business model. [SEP]",
'score': 0.020079681649804115,
'token': 14155,
'token_str': 'business'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
model = BertModel.from_pretrained("bert-base-multilingual-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
model = TFBertModel.from_pretrained("bert-base-multilingual-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
The BERT model was pretrained on the 104 languages with the largest Wikipedias. You can find the complete list
[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
The inputs of the model are then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
bert-base-multilingual-uncased | 2021-05-18T16:19:22.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"en",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 236,072 | transformers | ---
language: en
license: apache-2.0
datasets:
- wikipedia
---
# BERT multilingual base model (uncased)
Pretrained model on the top 102 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the languages in the training set that can then be used to
extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
standard classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a top model. [SEP]",
'score': 0.1507750153541565,
'token': 11397,
'token_str': 'top'},
{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.13075384497642517,
'token': 23589,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a good model. [SEP]",
'score': 0.036272723227739334,
'token': 12050,
'token_str': 'good'},
{'sequence': "[CLS] hello i'm a new model. [SEP]",
'score': 0.035954564809799194,
'token': 10246,
'token_str': 'new'},
{'sequence': "[CLS] hello i'm a great model. [SEP]",
'score': 0.028643041849136353,
'token': 11838,
'token_str': 'great'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
model = BertModel.from_pretrained("bert-base-multilingual-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
model = TFBertModel.from_pretrained("bert-base-multilingual-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-uncased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] the man worked as a teacher. [SEP]',
'score': 0.07943806052207947,
'token': 21733,
'token_str': 'teacher'},
{'sequence': '[CLS] the man worked as a lawyer. [SEP]',
'score': 0.0629938617348671,
'token': 34249,
'token_str': 'lawyer'},
{'sequence': '[CLS] the man worked as a farmer. [SEP]',
'score': 0.03367974981665611,
'token': 36799,
'token_str': 'farmer'},
{'sequence': '[CLS] the man worked as a journalist. [SEP]',
'score': 0.03172805905342102,
'token': 19477,
'token_str': 'journalist'},
{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
'score': 0.031021825969219208,
'token': 33241,
'token_str': 'carpenter'}]
>>> unmasker("The Black woman worked as a [MASK].")
[{'sequence': '[CLS] the black woman worked as a nurse. [SEP]',
'score': 0.07045423984527588,
'token': 52428,
'token_str': 'nurse'},
{'sequence': '[CLS] the black woman worked as a teacher. [SEP]',
'score': 0.05178029090166092,
'token': 21733,
'token_str': 'teacher'},
{'sequence': '[CLS] the black woman worked as a lawyer. [SEP]',
'score': 0.032601192593574524,
'token': 34249,
'token_str': 'lawyer'},
{'sequence': '[CLS] the black woman worked as a slave. [SEP]',
'score': 0.030507225543260574,
'token': 31173,
'token_str': 'slave'},
{'sequence': '[CLS] the black woman worked as a woman. [SEP]',
'score': 0.027691684663295746,
'token': 14050,
'token_str': 'woman'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on the 102 languages with the largest Wikipedias. You can find the complete list
[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
The inputs of the model are then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
bert-base-uncased | 2021-05-18T16:20:13.000Z | [
"pytorch",
"tf",
"jax",
"rust",
"bert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"exbert",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 9,435,580 | transformers | ---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT base model (uncased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.1073106899857521,
'token': 4827,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a role model. [SEP]",
'score': 0.08774490654468536,
'token': 2535,
'token_str': 'role'},
{'sequence': "[CLS] hello i'm a new model. [SEP]",
'score': 0.05338378623127937,
'token': 2047,
'token_str': 'new'},
{'sequence': "[CLS] hello i'm a super model. [SEP]",
'score': 0.04667217284440994,
'token': 3565,
'token_str': 'super'},
{'sequence': "[CLS] hello i'm a fine model. [SEP]",
'score': 0.027095865458250046,
'token': 2986,
'token_str': 'fine'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
'score': 0.09747550636529922,
'token': 10533,
'token_str': 'carpenter'},
{'sequence': '[CLS] the man worked as a waiter. [SEP]',
'score': 0.0523831807076931,
'token': 15610,
'token_str': 'waiter'},
{'sequence': '[CLS] the man worked as a barber. [SEP]',
'score': 0.04962705448269844,
'token': 13362,
'token_str': 'barber'},
{'sequence': '[CLS] the man worked as a mechanic. [SEP]',
'score': 0.03788609802722931,
'token': 15893,
'token_str': 'mechanic'},
{'sequence': '[CLS] the man worked as a salesman. [SEP]',
'score': 0.037680890411138535,
'token': 18968,
'token_str': 'salesman'}]
>>> unmasker("The woman worked as a [MASK].")
[{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
'score': 0.21981462836265564,
'token': 6821,
'token_str': 'nurse'},
{'sequence': '[CLS] the woman worked as a waitress. [SEP]',
'score': 0.1597415804862976,
'token': 13877,
'token_str': 'waitress'},
{'sequence': '[CLS] the woman worked as a maid. [SEP]',
'score': 0.1154729500412941,
'token': 10850,
'token_str': 'maid'},
{'sequence': '[CLS] the woman worked as a prostitute. [SEP]',
'score': 0.037968918681144714,
'token': 19215,
'token_str': 'prostitute'},
{'sequence': '[CLS] the woman worked as a cook. [SEP]',
'score': 0.03042375110089779,
'token': 5660,
'token_str': 'cook'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
|:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
| | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=bert-base-uncased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
bert-large-cased-whole-word-masking-finetuned-squad | 2021-05-18T16:22:37.000Z | [
"pytorch",
"tf",
"jax",
"tfsavedmodel",
"rust",
"bert",
"question-answering",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0"
] | question-answering | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"rust_model.ot",
"saved_model.tar.gz",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 2,773 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT large model (cased) whole word masking finetuned on SQuAD
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
This model should be used as a question-answering model. You may use it in a question answering pipeline, or use it to output raw results given a query and a context. You may see other use cases in the [task summary](https://huggingface.co/transformers/task_summary.html#extractive-question-answering) of the transformers documentation.## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### Fine-tuning
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. In order to reproduce the training, you may use the following command:
```
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_qa.py \
--model_name_or_path bert-large-cased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./examples/models/wwm_cased_finetuned_squad/ \
--per_device_eval_batch_size=3 \
--per_device_train_batch_size=3 \
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
bert-large-cased-whole-word-masking | 2021-05-18T16:30:05.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 8,481 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT large model (cased) whole word masking
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased-whole-word-masking')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] Hello I'm a fashion model. [SEP]",
"score":0.1474294513463974,
"token":4633,
"token_str":"fashion"
},
{
"sequence":"[CLS] Hello I'm a magazine model. [SEP]",
"score":0.05430116504430771,
"token":2435,
"token_str":"magazine"
},
{
"sequence":"[CLS] Hello I'm a male model. [SEP]",
"score":0.039395421743392944,
"token":2581,
"token_str":"male"
},
{
"sequence":"[CLS] Hello I'm a former model. [SEP]",
"score":0.036936815828084946,
"token":1393,
"token_str":"former"
},
{
"sequence":"[CLS] Hello I'm a professional model. [SEP]",
"score":0.03663451969623566,
"token":1848,
"token_str":"professional"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased-whole-word-masking')
model = BertModel.from_pretrained("bert-large-cased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased-whole-word-masking')
model = TFBertModel.from_pretrained("bert-large-cased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased-whole-word-masking')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] The man worked as a carpenter. [SEP]",
"score":0.09021259099245071,
"token":25169,
"token_str":"carpenter"
},
{
"sequence":"[CLS] The man worked as a cook. [SEP]",
"score":0.08125395327806473,
"token":9834,
"token_str":"cook"
},
{
"sequence":"[CLS] The man worked as a mechanic. [SEP]",
"score":0.07524766772985458,
"token":19459,
"token_str":"mechanic"
},
{
"sequence":"[CLS] The man worked as a waiter. [SEP]",
"score":0.07397029548883438,
"token":17989,
"token_str":"waiter"
},
{
"sequence":"[CLS] The man worked as a guard. [SEP]",
"score":0.05848982185125351,
"token":3542,
"token_str":"guard"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] The woman worked as a maid. [SEP]",
"score":0.19436432421207428,
"token":13487,
"token_str":"maid"
},
{
"sequence":"[CLS] The woman worked as a waitress. [SEP]",
"score":0.16161060333251953,
"token":15098,
"token_str":"waitress"
},
{
"sequence":"[CLS] The woman worked as a nurse. [SEP]",
"score":0.14942803978919983,
"token":7439,
"token_str":"nurse"
},
{
"sequence":"[CLS] The woman worked as a secretary. [SEP]",
"score":0.10373266786336899,
"token":4848,
"token_str":"secretary"
},
{
"sequence":"[CLS] The woman worked as a cook. [SEP]",
"score":0.06384387612342834,
"token":9834,
"token_str":"cook"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Cased (Whole Word Masking) | 92.9/86.7 | 86.46
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
bert-large-cased | 2021-05-18T16:33:16.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt",
"whole-word-masking.tar.gz"
] | huggingface | 72,330 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT large model (cased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] Hello I'm a male model. [SEP]",
"score":0.22748498618602753,
"token":2581,
"token_str":"male"
},
{
"sequence":"[CLS] Hello I'm a fashion model. [SEP]",
"score":0.09146175533533096,
"token":4633,
"token_str":"fashion"
},
{
"sequence":"[CLS] Hello I'm a new model. [SEP]",
"score":0.05823173746466637,
"token":1207,
"token_str":"new"
},
{
"sequence":"[CLS] Hello I'm a super model. [SEP]",
"score":0.04488750174641609,
"token":7688,
"token_str":"super"
},
{
"sequence":"[CLS] Hello I'm a famous model. [SEP]",
"score":0.03271442651748657,
"token":2505,
"token_str":"famous"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased')
model = BertModel.from_pretrained("bert-large-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased')
model = TFBertModel.from_pretrained("bert-large-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] The man worked as a doctor. [SEP]",
"score":0.0645911768078804,
"token":3995,
"token_str":"doctor"
},
{
"sequence":"[CLS] The man worked as a cop. [SEP]",
"score":0.057450827211141586,
"token":9947,
"token_str":"cop"
},
{
"sequence":"[CLS] The man worked as a mechanic. [SEP]",
"score":0.04392256215214729,
"token":19459,
"token_str":"mechanic"
},
{
"sequence":"[CLS] The man worked as a waiter. [SEP]",
"score":0.03755280375480652,
"token":17989,
"token_str":"waiter"
},
{
"sequence":"[CLS] The man worked as a teacher. [SEP]",
"score":0.03458863124251366,
"token":3218,
"token_str":"teacher"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] The woman worked as a nurse. [SEP]",
"score":0.2572779953479767,
"token":7439,
"token_str":"nurse"
},
{
"sequence":"[CLS] The woman worked as a waitress. [SEP]",
"score":0.16706500947475433,
"token":15098,
"token_str":"waitress"
},
{
"sequence":"[CLS] The woman worked as a teacher. [SEP]",
"score":0.04587847739458084,
"token":3218,
"token_str":"teacher"
},
{
"sequence":"[CLS] The woman worked as a secretary. [SEP]",
"score":0.03577028587460518,
"token":4848,
"token_str":"secretary"
},
{
"sequence":"[CLS] The woman worked as a maid. [SEP]",
"score":0.03298963978886604,
"token":13487,
"token_str":"maid"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Cased (Original) | 91.5/84.8 | 86.09
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
bert-large-uncased-whole-word-masking-finetuned-squad | 2021-05-18T16:35:27.000Z | [
"pytorch",
"tf",
"jax",
"tfsavedmodel",
"bert",
"question-answering",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0"
] | question-answering | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"saved_model.tar.gz",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 1,023,669 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT large model (uncased) whole word masking finetuned on SQuAD
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
This model should be used as a question-answering model. You may use it in a question answering pipeline, or use it to output raw results given a query and a context. You may see other use cases in the [task summary](https://huggingface.co/transformers/task_summary.html#extractive-question-answering) of the transformers documentation.## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### Fine-tuning
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. In order to reproduce the training, you may use the following command:
```
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_qa.py \
--model_name_or_path bert-large-uncased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./examples/models/wwm_uncased_finetuned_squad/ \
--per_device_eval_batch_size=3 \
--per_device_train_batch_size=3 \
```
## Evaluation results
The results obtained are the following:
```
f1 = 93.15
exact_match = 86.91
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
bert-large-uncased-whole-word-masking | 2021-05-18T16:37:36.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 14,760 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT large model (uncased) whole word masking
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased-whole-word-masking')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.15813860297203064,
'token': 4827,
'token_str': 'fashion'
}, {
'sequence': "[CLS] hello i'm a cover model. [SEP]",
'score': 0.10551052540540695,
'token': 3104,
'token_str': 'cover'
}, {
'sequence': "[CLS] hello i'm a male model. [SEP]",
'score': 0.08340442180633545,
'token': 3287,
'token_str': 'male'
}, {
'sequence': "[CLS] hello i'm a super model. [SEP]",
'score': 0.036381796002388,
'token': 3565,
'token_str': 'super'
}, {
'sequence': "[CLS] hello i'm a top model. [SEP]",
'score': 0.03609578311443329,
'token': 2327,
'token_str': 'top'
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking')
model = BertModel.from_pretrained("bert-large-uncased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking')
model = TFBertModel.from_pretrained("bert-large-uncased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased-whole-word-masking')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a waiter. [SEP]",
"score":0.09823174774646759,
"token":15610,
"token_str":"waiter"
},
{
"sequence":"[CLS] the man worked as a carpenter. [SEP]",
"score":0.08976428955793381,
"token":10533,
"token_str":"carpenter"
},
{
"sequence":"[CLS] the man worked as a mechanic. [SEP]",
"score":0.06550426036119461,
"token":15893,
"token_str":"mechanic"
},
{
"sequence":"[CLS] the man worked as a butcher. [SEP]",
"score":0.04142395779490471,
"token":14998,
"token_str":"butcher"
},
{
"sequence":"[CLS] the man worked as a barber. [SEP]",
"score":0.03680137172341347,
"token":13362,
"token_str":"barber"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a waitress. [SEP]",
"score":0.2669651508331299,
"token":13877,
"token_str":"waitress"
},
{
"sequence":"[CLS] the woman worked as a maid. [SEP]",
"score":0.13054853677749634,
"token":10850,
"token_str":"maid"
},
{
"sequence":"[CLS] the woman worked as a nurse. [SEP]",
"score":0.07987703382968903,
"token":6821,
"token_str":"nurse"
},
{
"sequence":"[CLS] the woman worked as a prostitute. [SEP]",
"score":0.058545831590890884,
"token":19215,
"token_str":"prostitute"
},
{
"sequence":"[CLS] the woman worked as a cleaner. [SEP]",
"score":0.03834161534905434,
"token":20133,
"token_str":"cleaner"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Uncased (Whole Word Masking) | 92.8/86.7 | 87.07
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
bert-large-uncased | 2021-05-18T16:40:29.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt",
"whole-word-masking.tar.gz"
] | huggingface | 384,968 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT large model (uncased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.1886913776397705,
'token': 4827,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a professional model. [SEP]",
'score': 0.07157472521066666,
'token': 2658,
'token_str': 'professional'},
{'sequence': "[CLS] hello i'm a male model. [SEP]",
'score': 0.04053466394543648,
'token': 3287,
'token_str': 'male'},
{'sequence': "[CLS] hello i'm a role model. [SEP]",
'score': 0.03891477733850479,
'token': 2535,
'token_str': 'role'},
{'sequence': "[CLS] hello i'm a fitness model. [SEP]",
'score': 0.03038121573626995,
'token': 10516,
'token_str': 'fitness'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
model = BertModel.from_pretrained("bert-large-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
model = TFBertModel.from_pretrained("bert-large-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] the man worked as a bartender. [SEP]',
'score': 0.10426565259695053,
'token': 15812,
'token_str': 'bartender'},
{'sequence': '[CLS] the man worked as a waiter. [SEP]',
'score': 0.10232779383659363,
'token': 15610,
'token_str': 'waiter'},
{'sequence': '[CLS] the man worked as a mechanic. [SEP]',
'score': 0.06281787157058716,
'token': 15893,
'token_str': 'mechanic'},
{'sequence': '[CLS] the man worked as a lawyer. [SEP]',
'score': 0.050936125218868256,
'token': 5160,
'token_str': 'lawyer'},
{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
'score': 0.041034240275621414,
'token': 10533,
'token_str': 'carpenter'}]
>>> unmasker("The woman worked as a [MASK].")
[{'sequence': '[CLS] the woman worked as a waitress. [SEP]',
'score': 0.28473711013793945,
'token': 13877,
'token_str': 'waitress'},
{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
'score': 0.11336520314216614,
'token': 6821,
'token_str': 'nurse'},
{'sequence': '[CLS] the woman worked as a bartender. [SEP]',
'score': 0.09574324637651443,
'token': 15812,
'token_str': 'bartender'},
{'sequence': '[CLS] the woman worked as a maid. [SEP]',
'score': 0.06351090222597122,
'token': 10850,
'token_str': 'maid'},
{'sequence': '[CLS] the woman worked as a secretary. [SEP]',
'score': 0.048970773816108704,
'token': 3187,
'token_str': 'secretary'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Uncased (Original) | 91.0/84.3 | 86.05
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |
camembert-base | 2021-06-09T00:01:44.000Z | [
"pytorch",
"tf",
"camembert",
"masked-lm",
"fr",
"dataset:oscar",
"arxiv:1911.03894",
"transformers",
"license:mit",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"sentencepiece.bpe.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 66,487 | transformers | ---
language: fr
license: mit
datasets:
- oscar
---
# CamemBERT: a Tasty French Language Model
## Introduction
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model.
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
## Pre-trained models
| Model | #params | Arch. | Training data |
|--------------------------------|--------------------------------|-------|-----------------------------------|
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) |
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) |
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) |
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) |
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
## How to use CamemBERT with HuggingFace
##### Load CamemBERT and its sub-word tokenizer :
```python
from transformers import CamembertModel, CamembertTokenizer
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
camembert = CamembertModel.from_pretrained("camembert-base")
camembert.eval() # disable dropout (or leave in train mode to finetune)
```
##### Filling masks using pipeline
```python
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base")
results = camembert_fill_mask("Le camembert est <mask> :)")
# results
#[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200},
# {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183},
# {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202},
# {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528},
# {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}]
```
##### Extract contextual embedding features from Camembert output
```python
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
# tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116],
# [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766],
# [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446],
# ...,
```
##### Extract contextual embedding features from all Camembert layers
```python
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert-base", config=config)
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210],
# [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982],
# [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699],
# ...,
```
## Authors
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
## Citation
If you use our work, please cite:
```bibtex
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
```
|
ctrl | 2021-04-07T15:20:39.000Z | [
"pytorch",
"tf",
"transformers"
] | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 895 | transformers | ||
distilbert-base-cased-distilled-squad | 2020-12-11T21:23:50.000Z | [
"pytorch",
"tf",
"tfsavedmodel",
"rust",
"distilbert",
"question-answering",
"en",
"dataset:squad",
"transformers",
"license:apache-2.0"
] | question-answering | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"saved_model.tar.gz",
"tf_model.h5",
"tfjs.tar.gz",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 80,434 | transformers | ---
language: "en"
datasets:
- squad
metrics:
- squad
license: apache-2.0
---
# DistilBERT base cased distilled SQuAD
This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1.
This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7).
|
distilbert-base-cased | 2020-12-11T21:23:53.000Z | [
"pytorch",
"tf",
"distilbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1910.01108",
"transformers",
"license:apache-2.0"
] | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 1,131,632 | transformers | ---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# DistilBERT base model (cased)
This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-cased).
It was introduced in [this paper](https://arxiv.org/abs/1910.01108).
The code for the distillation process can be found
[here](https://github.com/huggingface/transformers/tree/master/examples/distillation).
This model is cased: it does make a difference between english and English.
All the training details on the pre-training, the uses, limitations and potential biases are the same as for [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased).
We highly encourage to check it if you want to know more.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 81.5 | 87.8 | 88.2 | 90.4 | 47.2 | 85.5 | 85.6 | 60.6 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
|
|
distilbert-base-german-cased | 2020-12-11T21:23:57.000Z | [
"pytorch",
"distilbert",
"masked-lm",
"de",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 19,689 | transformers | ---
language: de
license: apache-2.0
---
## distilbert-base-german-cased
|
distilbert-base-multilingual-cased | 2020-12-11T21:24:01.000Z | [
"pytorch",
"tf",
"distilbert",
"masked-lm",
"multilingual",
"dataset:wikipedia",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 211,868 | transformers | ---
language: multilingual
license: apache-2.0
datasets:
- wikipedia
---
# DistilBERT base multilingual model (cased)
This model is a distilled version of the [BERT base multilingual model](bert-base-multilingual-cased). The code for the distillation process can be found
[here](https://github.com/huggingface/transformers/tree/master/examples/distillation). This model is cased: it does make a difference between english and English.
The model is trained on the concatenation of Wikipedia in 104 different languages listed [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
The model has 6 layers, 768 dimension and 12 heads, totalizing 134M parameters (compared to 177M parameters for mBERT-base).
On average DistilmBERT is twice as fast as mBERT-base.
We encourage to check [BERT base multilingual model](bert-base-multilingual-cased) to know more about usage, limitations and potential biases.
| Model | English | Spanish | Chinese | German | Arabic | Urdu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---:|
| mBERT base cased (computed) | 82.1 | 74.6 | 69.1 | 72.3 | 66.4 | 58.5 |
| mBERT base uncased (reported)| 81.4 | 74.3 | 63.8 | 70.5 | 62.1 | 58.3 |
| DistilmBERT | 78.2 | 69.1 | 64.0 | 66.3 | 59.1 | 54.7 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
|
distilbert-base-uncased-distilled-squad | 2020-12-11T21:24:04.000Z | [
"pytorch",
"tf",
"tflite",
"tfsavedmodel",
"distilbert",
"question-answering",
"en",
"dataset:squad",
"transformers",
"license:apache-2.0"
] | question-answering | [
".gitattributes",
"384-8bits.tflite",
"384-fp16.tflite",
"384.tflite",
"README.md",
"config.json",
"pytorch_model.bin",
"saved_model.tar.gz",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 195,361 | transformers | ---
language: en
datasets:
- squad
widget:
- text: "Which name is also used to describe the Amazon rainforest in English?"
context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
- text: "How many square kilometers of rainforest is covered in the basin?"
context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
license: apache-2.0
---
# DistilBERT base uncased distilled SQuAD
This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1.
This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert bert-base-uncased version reaches a F1 score of 88.5).
|
distilbert-base-uncased-finetuned-sst-2-english | 2021-02-09T07:59:22.000Z | [
"pytorch",
"tf",
"rust",
"distilbert",
"text-classification",
"en",
"dataset:sst-2",
"transformers",
"license:apache-2.0"
] | text-classification | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 1,313,968 | transformers | ---
language: en
license: apache-2.0
datasets:
- sst-2
---
# DistilBERT base uncased finetuned SST-2
This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned on SST-2.
This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7).
# Fine-tuning hyper-parameters
- learning_rate = 1e-5
- batch_size = 32
- warmup = 600
- max_seq_length = 128
- num_train_epochs = 3.0
|
distilbert-base-uncased | 2020-12-11T21:24:10.000Z | [
"pytorch",
"tf",
"rust",
"distilbert",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1910.01108",
"transformers",
"exbert",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"tokenizer_config.json",
"vocab.txt"
] | huggingface | 3,098,325 | transformers | ---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# DistilBERT base model (uncased)
This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was
introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found
[here](https://github.com/huggingface/transformers/tree/master/examples/distillation). This model is uncased: it does
not make a difference between english and English.
## Model description
DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a
self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only,
with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic
process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained
with three objectives:
- Distillation loss: the model was trained to return the same probabilities as the BERT base model.
- Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a
sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the
model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that
usually see the words one after the other, or from autoregressive models like GPT which internally mask the future
tokens. It allows the model to learn a bidirectional representation of the sentence.
- Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base
model.
This way, the model learns the same inner representation of the English language than its teacher model, while being
faster for inference or downstream tasks.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a role model. [SEP]",
'score': 0.05292855575680733,
'token': 2535,
'token_str': 'role'},
{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.03968575969338417,
'token': 4827,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a business model. [SEP]",
'score': 0.034743521362543106,
'token': 2449,
'token_str': 'business'},
{'sequence': "[CLS] hello i'm a model model. [SEP]",
'score': 0.03462274372577667,
'token': 2944,
'token_str': 'model'},
{'sequence': "[CLS] hello i'm a modeling model. [SEP]",
'score': 0.018145186826586723,
'token': 11643,
'token_str': 'modeling'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import DistilBertTokenizer, DistilBertModel
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertModel.from_pretrained("distilbert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import DistilBertTokenizer, TFDistilBertModel
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions. It also inherits some of
[the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias).
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased')
>>> unmasker("The White man worked as a [MASK].")
[{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]',
'score': 0.1235365942120552,
'token': 20987,
'token_str': 'blacksmith'},
{'sequence': '[CLS] the white man worked as a carpenter. [SEP]',
'score': 0.10142576694488525,
'token': 10533,
'token_str': 'carpenter'},
{'sequence': '[CLS] the white man worked as a farmer. [SEP]',
'score': 0.04985016956925392,
'token': 7500,
'token_str': 'farmer'},
{'sequence': '[CLS] the white man worked as a miner. [SEP]',
'score': 0.03932540491223335,
'token': 18594,
'token_str': 'miner'},
{'sequence': '[CLS] the white man worked as a butcher. [SEP]',
'score': 0.03351764753460884,
'token': 14998,
'token_str': 'butcher'}]
>>> unmasker("The Black woman worked as a [MASK].")
[{'sequence': '[CLS] the black woman worked as a waitress. [SEP]',
'score': 0.13283951580524445,
'token': 13877,
'token_str': 'waitress'},
{'sequence': '[CLS] the black woman worked as a nurse. [SEP]',
'score': 0.12586183845996857,
'token': 6821,
'token_str': 'nurse'},
{'sequence': '[CLS] the black woman worked as a maid. [SEP]',
'score': 0.11708822101354599,
'token': 10850,
'token_str': 'maid'},
{'sequence': '[CLS] the black woman worked as a prostitute. [SEP]',
'score': 0.11499975621700287,
'token': 19215,
'token_str': 'prostitute'},
{'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]',
'score': 0.04722772538661957,
'token': 22583,
'token_str': 'housekeeper'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset
consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia)
(excluding lists, tables and headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 8 16 GB V100 for 90 hours. See the
[training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters
details.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
<a href="https://huggingface.co/exbert/?model=distilbert-base-uncased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
distilgpt2 | 2021-05-21T09:15:46.000Z | [
"pytorch",
"tf",
"jax",
"tflite",
"rust",
"gpt2",
"lm-head",
"causal-lm",
"en",
"dataset:openwebtext",
"transformers",
"exbert",
"license:apache-2.0",
"text-generation"
] | text-generation | [
".gitattributes",
"64.tflite",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 36,774 | transformers | ---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- openwebtext
---
# DistilGPT2
DistilGPT2 English language model pretrained with the supervision of [GPT2](https://huggingface.co/gpt2) (the smallest version of GPT2) on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset. The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2.
On the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT2 reaches a perplexity on the test set of 16.3 compared to 21.1 for DistilGPT2 (after fine-tuning on the train set).
We encourage to check [GPT2](https://huggingface.co/gpt2) to know more about usage, limitations and potential biases.
<a href="https://huggingface.co/exbert/?model=distilgpt2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
distilroberta-base | 2021-05-20T22:47:11.000Z | [
"pytorch",
"tf",
"jax",
"rust",
"roberta",
"masked-lm",
"en",
"dataset:openwebtext",
"transformers",
"exbert",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"dict.txt",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 148,602 | transformers | ---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- openwebtext
---
# DistilRoBERTa base model
This model is a distilled version of the [RoBERTa-base model](https://huggingface.co/roberta-base). It follows the same training procedure as [DistilBERT](https://huggingface.co/distilbert-base-uncased).
The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/master/examples/distillation).
This model is case-sensitive: it makes a difference between english and English.
The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base).
On average DistilRoBERTa is twice as fast as Roberta-base.
We encourage to check [RoBERTa-base model](https://huggingface.co/roberta-base) to know more about usage, limitations and potential biases.
## Training data
DistilRoBERTa was pre-trained on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset (it is ~4 times less training data than the teacher RoBERTa).
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 84.0 | 89.4 | 90.8 | 92.5 | 59.3 | 88.3 | 86.6 | 67.9 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
<a href="https://huggingface.co/exbert/?model=distilroberta-base">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
gpt2-large | 2021-05-21T09:11:31.000Z | [
"pytorch",
"tf",
"jax",
"rust",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 173,747 | transformers | Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
|
gpt2-medium | 2021-05-21T09:17:57.000Z | [
"pytorch",
"tf",
"jax",
"rust",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 43,199 | transformers | Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
|
gpt2-xl | 2021-05-21T09:24:52.000Z | [
"pytorch",
"tf",
"rust",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 31,984 | transformers | Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
|
gpt2 | 2021-05-19T16:25:59.000Z | [
"pytorch",
"tf",
"jax",
"tflite",
"rust",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"exbert",
"license:mit",
"text-generation"
] | text-generation | [
".gitattributes",
"64-8bits.tflite",
"64-fp16.tflite",
"64.tflite",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 811,089 | transformers | ---
language: en
tags:
- exbert
license: mit
---
# GPT-2
Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
Disclaimer: The team releasing GPT-2 also wrote a
[model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card
has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.
## Model description
GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a
prompt.
## Intended uses & limitations
You can use the raw model for text generation or fine-tune it to a downstream task. See the
[model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you.
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."},
{'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"},
{'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"},
{'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"},
{'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = TFGPT2Model.from_pretrained('gpt2')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of
unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their
[model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases):
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases
> that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do
> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a
> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,
> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar
> levels of caution around use cases that are sensitive to biases around human attributes.
Here's an example of how the model can have biased predictions:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2')
>>> set_seed(42)
>>> generator("The White man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The White man worked as a mannequin for'},
{'generated_text': 'The White man worked as a maniser of the'},
{'generated_text': 'The White man worked as a bus conductor by day'},
{'generated_text': 'The White man worked as a plumber at the'},
{'generated_text': 'The White man worked as a journalist. He had'}]
>>> set_seed(42)
>>> generator("The Black man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The Black man worked as a man at a restaurant'},
{'generated_text': 'The Black man worked as a car salesman in a'},
{'generated_text': 'The Black man worked as a police sergeant at the'},
{'generated_text': 'The Black man worked as a man-eating monster'},
{'generated_text': 'The Black man worked as a slave, and was'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
## Training procedure
### Preprocessing
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact
details of training.
## Evaluation results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 |
### BibTeX entry and citation info
```bibtex
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
```
<a href="https://huggingface.co/exbert/?model=gpt2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
openai-gpt | 2020-12-09T18:29:54.000Z | [
"pytorch",
"tf",
"rust",
"openai-gpt",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 10,830 | transformers | |
roberta-base-openai-detector | 2021-05-21T08:56:30.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"tokenizer.json",
"vocab.json"
] | huggingface | 887 | transformers | |
roberta-base | 2020-12-11T21:25:32.000Z | [
"pytorch",
"tf",
"jax",
"rust",
"roberta",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1907.11692",
"arxiv:1806.02847",
"transformers",
"exbert",
"license:mit",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"dict.txt",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"rust_model.ot",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 2,243,699 | transformers | ---
language: en
tags:
- exbert
license: mit
datasets:
- bookcorpus
- wikipedia
---
# RoBERTa base model
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it
makes a difference between english and English.
Disclaimer: The team releasing RoBERTa did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-base')
>>> unmasker("Hello I'm a <mask> model.")
[{'sequence': "<s>Hello I'm a male model.</s>",
'score': 0.3306540250778198,
'token': 2943,
'token_str': 'Ġmale'},
{'sequence': "<s>Hello I'm a female model.</s>",
'score': 0.04655390977859497,
'token': 2182,
'token_str': 'Ġfemale'},
{'sequence': "<s>Hello I'm a professional model.</s>",
'score': 0.04232972860336304,
'token': 2038,
'token_str': 'Ġprofessional'},
{'sequence': "<s>Hello I'm a fashion model.</s>",
'score': 0.037216778844594955,
'token': 2734,
'token_str': 'Ġfashion'},
{'sequence': "<s>Hello I'm a Russian model.</s>",
'score': 0.03253649175167084,
'token': 1083,
'token_str': 'ĠRussian'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaModel.from_pretrained('roberta-base')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = TFRobertaModel.from_pretrained('roberta-base')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from
neutral. Therefore, the model can have biased predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-base')
>>> unmasker("The man worked as a <mask>.")
[{'sequence': '<s>The man worked as a mechanic.</s>',
'score': 0.08702439814805984,
'token': 25682,
'token_str': 'Ġmechanic'},
{'sequence': '<s>The man worked as a waiter.</s>',
'score': 0.0819653645157814,
'token': 38233,
'token_str': 'Ġwaiter'},
{'sequence': '<s>The man worked as a butcher.</s>',
'score': 0.073323555290699,
'token': 32364,
'token_str': 'Ġbutcher'},
{'sequence': '<s>The man worked as a miner.</s>',
'score': 0.046322137117385864,
'token': 18678,
'token_str': 'Ġminer'},
{'sequence': '<s>The man worked as a guard.</s>',
'score': 0.040150221437215805,
'token': 2510,
'token_str': 'Ġguard'}]
>>> unmasker("The Black woman worked as a <mask>.")
[{'sequence': '<s>The Black woman worked as a waitress.</s>',
'score': 0.22177888453006744,
'token': 35698,
'token_str': 'Ġwaitress'},
{'sequence': '<s>The Black woman worked as a prostitute.</s>',
'score': 0.19288744032382965,
'token': 36289,
'token_str': 'Ġprostitute'},
{'sequence': '<s>The Black woman worked as a maid.</s>',
'score': 0.06498628109693527,
'token': 29754,
'token_str': 'Ġmaid'},
{'sequence': '<s>The Black woman worked as a secretary.</s>',
'score': 0.05375480651855469,
'token': 2971,
'token_str': 'Ġsecretary'},
{'sequence': '<s>The Black woman worked as a nurse.</s>',
'score': 0.05245552211999893,
'token': 9008,
'token_str': 'Ġnurse'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The RoBERTa model was pretrained on the reunion of five datasets:
- [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books;
- [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ;
- [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news
articles crawled between September 2016 and February 2019.
- [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to
train GPT-2,
- [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas.
Together theses datasets weight 160GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50,000. The inputs of
the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked
with `<s>` and the end of one by `</s>`
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).
### Pretraining
The model was trained on 1024 V100 GPUs for 500K steps with a batch size of 8K and a sequence length of 512. The
optimizer used is Adam with a learning rate of 6e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and
\\(\epsilon = 1e-6\\), a weight decay of 0.01, learning rate warmup for 24,000 steps and linear decay of the learning
rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 87.6 | 91.9 | 92.8 | 94.8 | 63.6 | 91.2 | 90.2 | 78.7 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1907-11692,
author = {Yinhan Liu and
Myle Ott and
Naman Goyal and
Jingfei Du and
Mandar Joshi and
Danqi Chen and
Omer Levy and
Mike Lewis and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
journal = {CoRR},
volume = {abs/1907.11692},
year = {2019},
url = {http://arxiv.org/abs/1907.11692},
archivePrefix = {arXiv},
eprint = {1907.11692},
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=roberta-base">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
roberta-large-mnli | 2021-05-20T19:32:30.000Z | [
"pytorch",
"tf",
"jax",
"roberta",
"text-classification",
"transformers",
"license:mit"
] | text-classification | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 435,573 | transformers | ---
license: mit
widget:
- text: "I like you. </s></s> I love you."
---
## roberta-large-mnli
Trained by Facebook, [original source](https://github.com/pytorch/fairseq/tree/master/examples/roberta)
```bibtex
@article{liu2019roberta,
title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
Luke Zettlemoyer and Veselin Stoyanov},
journal={arXiv preprint arXiv:1907.11692},
year = {2019},
}
```
|
roberta-large-openai-detector | 2021-05-21T08:58:12.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"tokenizer.json",
"vocab.json"
] | huggingface | 821 | transformers | |
roberta-large | 2021-05-21T08:57:02.000Z | [
"pytorch",
"tf",
"jax",
"roberta",
"masked-lm",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1907.11692",
"arxiv:1806.02847",
"transformers",
"exbert",
"license:mit",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"tokenizer.json",
"vocab.json"
] | huggingface | 841,888 | transformers | ---
language: en
tags:
- exbert
license: mit
datasets:
- bookcorpus
- wikipedia
---
# RoBERTa large model
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it
makes a difference between english and English.
Disclaimer: The team releasing RoBERTa did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-large')
>>> unmasker("Hello I'm a <mask> model.")
[{'sequence': "<s>Hello I'm a male model.</s>",
'score': 0.3317350447177887,
'token': 2943,
'token_str': 'Ġmale'},
{'sequence': "<s>Hello I'm a fashion model.</s>",
'score': 0.14171843230724335,
'token': 2734,
'token_str': 'Ġfashion'},
{'sequence': "<s>Hello I'm a professional model.</s>",
'score': 0.04291723668575287,
'token': 2038,
'token_str': 'Ġprofessional'},
{'sequence': "<s>Hello I'm a freelance model.</s>",
'score': 0.02134818211197853,
'token': 18150,
'token_str': 'Ġfreelance'},
{'sequence': "<s>Hello I'm a young model.</s>",
'score': 0.021098261699080467,
'token': 664,
'token_str': 'Ġyoung'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
model = RobertaModel.from_pretrained('roberta-large')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
model = TFRobertaModel.from_pretrained('roberta-large')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from
neutral. Therefore, the model can have biased predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-large')
>>> unmasker("The man worked as a <mask>.")
[{'sequence': '<s>The man worked as a mechanic.</s>',
'score': 0.08260300755500793,
'token': 25682,
'token_str': 'Ġmechanic'},
{'sequence': '<s>The man worked as a driver.</s>',
'score': 0.05736079439520836,
'token': 1393,
'token_str': 'Ġdriver'},
{'sequence': '<s>The man worked as a teacher.</s>',
'score': 0.04709019884467125,
'token': 3254,
'token_str': 'Ġteacher'},
{'sequence': '<s>The man worked as a bartender.</s>',
'score': 0.04641604796051979,
'token': 33080,
'token_str': 'Ġbartender'},
{'sequence': '<s>The man worked as a waiter.</s>',
'score': 0.04239227622747421,
'token': 38233,
'token_str': 'Ġwaiter'}]
>>> unmasker("The woman worked as a <mask>.")
[{'sequence': '<s>The woman worked as a nurse.</s>',
'score': 0.2667474150657654,
'token': 9008,
'token_str': 'Ġnurse'},
{'sequence': '<s>The woman worked as a waitress.</s>',
'score': 0.12280137836933136,
'token': 35698,
'token_str': 'Ġwaitress'},
{'sequence': '<s>The woman worked as a teacher.</s>',
'score': 0.09747499972581863,
'token': 3254,
'token_str': 'Ġteacher'},
{'sequence': '<s>The woman worked as a secretary.</s>',
'score': 0.05783602222800255,
'token': 2971,
'token_str': 'Ġsecretary'},
{'sequence': '<s>The woman worked as a cleaner.</s>',
'score': 0.05576248839497566,
'token': 16126,
'token_str': 'Ġcleaner'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The RoBERTa model was pretrained on the reunion of five datasets:
- [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books;
- [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ;
- [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news
articles crawled between September 2016 and February 2019.
- [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to
train GPT-2,
- [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas.
Together theses datasets weight 160GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50,000. The inputs of
the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked
with `<s>` and the end of one by `</s>`
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).
### Pretraining
The model was trained on 1024 V100 GPUs for 500K steps with a batch size of 8K and a sequence length of 512. The
optimizer used is Adam with a learning rate of 4e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and
\\(\epsilon = 1e-6\\), a weight decay of 0.01, learning rate warmup for 30,000 steps and linear decay of the learning
rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 90.2 | 92.2 | 94.7 | 96.4 | 68.0 | 96.4 | 90.9 | 86.6 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1907-11692,
author = {Yinhan Liu and
Myle Ott and
Naman Goyal and
Jingfei Du and
Mandar Joshi and
Danqi Chen and
Omer Levy and
Mike Lewis and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
journal = {CoRR},
volume = {abs/1907.11692},
year = {2019},
url = {http://arxiv.org/abs/1907.11692},
archivePrefix = {arXiv},
eprint = {1907.11692},
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=roberta-base">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
t5-11b | 2021-03-18T01:58:45.000Z | [
"pytorch",
"tf",
"t5",
"lm-head",
"seq2seq",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"arxiv:1910.10683",
"transformers",
"summarization",
"translation",
"license:apache-2.0",
"text2text-generation"
] | translation | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 1,918 | transformers | ---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
license: apache-2.0
inference: false
---
## Disclaimer
**Before `transformers` v3.5.0**, due do its immense size, `t5-11b` required some special treatment.
If you're using transformers `<= v3.4.0`, `t5-11b` should be loaded with flag `use_cdn` set to `False` as follows:
```python
t5 = transformers.T5ForConditionalGeneration.from_pretrained('t5-11b', use_cdn = False)
```
Secondly, a single GPU will most likely not have enough memory to even load the model into memory as the weights alone amount to over 40 GB.
- Model parallelism has to be used here to overcome this problem as is explained in this [PR](https://github.com/huggingface/transformers/pull/3578).
- DeepSpeed's ZeRO-Offload is another approach as explained in this [post](https://github.com/huggingface/transformers/issues/9996).
## [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.
![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
|
t5-3b | 2021-03-18T01:58:22.000Z | [
"pytorch",
"tf",
"t5",
"lm-head",
"seq2seq",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"arxiv:1910.10683",
"transformers",
"summarization",
"translation",
"license:apache-2.0",
"text2text-generation"
] | translation | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 7,022 | transformers | ---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.
![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
|
t5-base | 2021-03-18T01:56:47.000Z | [
"pytorch",
"tf",
"rust",
"t5",
"lm-head",
"seq2seq",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"arxiv:1910.10683",
"transformers",
"summarization",
"translation",
"license:apache-2.0",
"text2text-generation"
] | translation | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"spiece.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 206,033 | transformers | ---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.
![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
|
t5-large | 2021-03-18T01:57:43.000Z | [
"pytorch",
"tf",
"t5",
"lm-head",
"seq2seq",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"arxiv:1910.10683",
"transformers",
"summarization",
"translation",
"license:apache-2.0",
"text2text-generation"
] | translation | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 102,518 | transformers | ---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.
![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
|
t5-small | 2021-03-18T01:57:17.000Z | [
"pytorch",
"tf",
"rust",
"t5",
"lm-head",
"seq2seq",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"arxiv:1910.10683",
"transformers",
"summarization",
"translation",
"license:apache-2.0",
"text2text-generation"
] | translation | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"spiece.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 260,740 | transformers | ---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.
![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
|
transfo-xl-wt103 | 2020-12-09T18:29:59.000Z | [
"pytorch",
"tf",
"transfo-xl",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"config.json",
"corpus.bin",
"pytorch_model.bin",
"tf_model.h5",
"vocab.bin",
"vocab.json",
"vocab.pkl"
] | huggingface | 10,156 | transformers | |
xlm-clm-ende-1024 | 2021-03-17T15:02:53.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 16,210 | transformers | |
xlm-clm-enfr-1024 | 2021-03-17T15:02:25.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 200 | transformers | |
xlm-mlm-100-1280 | 2020-12-09T18:30:01.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 3,520 | transformers | |
xlm-mlm-17-1280 | 2020-12-09T18:30:01.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 558 | transformers | |
xlm-mlm-en-2048 | 2020-12-11T21:26:01.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"exbert",
"license:cc-by-nc-4.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 1,692 | transformers | ---
tags:
- exbert
license: cc-by-nc-4.0
---
<a href="https://huggingface.co/exbert/?model=xlm-mlm-en-2048">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
xlm-mlm-ende-1024 | 2020-12-09T18:30:01.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 3,045 | transformers | |
xlm-mlm-enfr-1024 | 2020-12-09T18:30:01.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 178 | transformers | |
xlm-mlm-enro-1024 | 2020-12-09T18:30:01.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 89 | transformers | |
xlm-mlm-tlm-xnli15-1024 | 2020-12-09T18:30:01.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 810 | transformers | |
xlm-mlm-xnli15-1024 | 2020-12-09T18:30:03.000Z | [
"pytorch",
"tf",
"xlm",
"lm-head",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"tf_model.h5",
"vocab.json"
] | huggingface | 971 | transformers | |
xlm-roberta-base | 2020-12-11T21:26:06.000Z | [
"pytorch",
"xlm-roberta",
"masked-lm",
"transformers",
"exbert",
"license:mit",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"sentencepiece.bpe.model",
"tokenizer.json"
] | huggingface | 5,526,144 | transformers | ---
tags:
- exbert
license: mit
---
<a href="https://huggingface.co/exbert/?model=xlm-roberta-base">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
xlm-roberta-large-finetuned-conll02-dutch | 2020-10-12T12:57:10.000Z | [
"pytorch",
"rust",
"xlm-roberta",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"sentencepiece.bpe.model",
"tokenizer.json"
] | huggingface | 372 | transformers | |
xlm-roberta-large-finetuned-conll02-spanish | 2020-10-12T12:57:12.000Z | [
"pytorch",
"rust",
"xlm-roberta",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"sentencepiece.bpe.model",
"tokenizer.json"
] | huggingface | 37 | transformers | |
xlm-roberta-large-finetuned-conll03-english | 2020-10-12T12:57:14.000Z | [
"pytorch",
"rust",
"xlm-roberta",
"token-classification",
"transformers"
] | token-classification | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"sentencepiece.bpe.model",
"tokenizer.json"
] | huggingface | 41,346 | transformers | |
xlm-roberta-large-finetuned-conll03-german | 2020-12-11T21:26:10.000Z | [
"pytorch",
"rust",
"xlm-roberta",
"token-classification",
"de",
"transformers"
] | token-classification | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"sentencepiece.bpe.model",
"tokenizer.json"
] | huggingface | 2,803 | transformers | ---
language: de
---
## xlm-roberta-large-finetuned-conll03-german
|
xlm-roberta-large | 2020-10-12T12:57:23.000Z | [
"pytorch",
"xlm-roberta",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"sentencepiece.bpe.model",
"tokenizer.json"
] | huggingface | 110,343 | transformers | |
xlnet-base-cased | 2020-12-09T18:30:03.000Z | [
"pytorch",
"tf",
"rust",
"xlnet",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"rust_model.ot",
"spiece.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 72,131 | transformers | |
xlnet-large-cased | 2020-12-09T18:30:03.000Z | [
"pytorch",
"tf",
"xlnet",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"spiece.model",
"tf_model.h5",
"tokenizer.json"
] | huggingface | 25,474 | transformers | |
1712871/manual_vn_electra_small | 2020-11-24T07:55:02.000Z | [] | [
".gitattributes"
] | 1712871 | 0 | |||
1757968399/tinybert_4_312_1200 | 2020-07-27T07:25:03.000Z | [
"pytorch",
"transformers"
] | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"vocab.txt"
] | 1757968399 | 20 | transformers | ||
18811449050/bert_cn_finetuning | 2021-05-18T17:03:47.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"eval_results.txt",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.txt"
] | 18811449050 | 29 | transformers | |
18811449050/bert_finetuning_test | 2021-05-18T17:05:20.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"eval_results.txt",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.txt"
] | 18811449050 | 31 | transformers | |
1n3skh/idk | 2021-04-11T11:22:17.000Z | [] | [
".gitattributes"
] | 1n3skh | 0 | |||
850886470/xxy_gpt2_chinese | 2021-01-21T05:36:56.000Z | [] | [
".gitattributes"
] | 850886470 | 0 | |||
A-bhimany-u08/bert-base-cased-qqp | 2021-05-23T06:58:51.000Z | [
"pytorch",
"bert",
"text-classification",
"dataset:qqp",
"transformers"
] | text-classification | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] | A-bhimany-u08 | 211 | transformers |
---
inference: False
datasets:
- qqp
---
bert-base-cased model trained on quora question pair dataset. The task requires to predict whether the two given sentences (or questions) are `not_duplicate` (label 0) or `duplicate` (label 1). The model achieves 89% evaluation accuracy
|
AC/Rec | 2021-04-20T07:38:13.000Z | [] | [
".gitattributes"
] | AC | 0 | |||
AI-Growth/PatentSBERTa | 2021-05-26T11:07:39.000Z | [
"pytorch",
"roberta",
"transformers"
] | [
".gitattributes",
"config.json",
"merges.txt",
"pytorch_model.bin",
"sentence_bert_config.json",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] | AI-Growth | 98 | transformers | ||
AK/ak_nlp | 2021-05-20T11:39:02.000Z | [
"pytorch",
"jax",
"roberta",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"training_args.bin",
"vocab.json"
] | AK | 13 | transformers | |
ALINEAR/albert-japanese-v2 | 2020-05-04T13:20:53.000Z | [
"pytorch",
"albert",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] | ALINEAR | 1,499 | transformers | |
ALINEAR/albert-japanese | 2020-04-24T16:08:41.000Z | [
"pytorch",
"albert",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"spiece.model"
] | ALINEAR | 27 | transformers | |
ALaks96/distilbart-cnn-12-6 | 2021-05-18T20:49:10.000Z | [] | [
".gitattributes"
] | ALaks96 | 0 | |||
AaravMonkey/modelRepo | 2021-05-02T10:21:30.000Z | [] | [
".gitattributes"
] | AaravMonkey | 0 | |||
AbdelrahmanZayed/my-awesome-model | 2021-05-30T19:32:35.000Z | [] | [
".gitattributes"
] | AbdelrahmanZayed | 0 | |||
Abhilash/BERTBasePyTorch | 2021-03-03T00:01:52.000Z | [] | [
".gitattributes",
"bert_base.pt"
] | Abhilash | 0 | |||
AbyV/test | 2021-03-22T09:08:09.000Z | [] | [
".gitattributes",
"README.md"
] | AbyV | 0 | |||
AdapterHub/roberta-base-pf-sick | 2021-06-16T16:11:08.000Z | [
"roberta",
"en",
"dataset:sick",
"adapter-transformers"
] | [
".gitattributes",
"README.md",
"adapter_config.json",
"head_config.json",
"pytorch_adapter.bin",
"pytorch_model_head.bin"
] | AdapterHub | 0 | adapter-transformers | ||
Adnan/UrduNewsHeadlines | 2021-03-01T08:43:33.000Z | [] | [
".gitattributes"
] | Adnan | 0 | |||
Aero/Tsubomi-Haruno | 2021-06-14T22:21:24.000Z | [
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"conversational",
"license:mit",
"text-generation"
] | conversational | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json"
] | Aero | 60 | transformers | ---
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
tags:
- conversational
license: mit
---
# DialoGPT Trained on the Speech of a Game Character
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("Tsubomi: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
``` |
Ahmed59/Demo-Team-5-SIAD | 2021-05-20T11:39:40.000Z | [
"tf",
"roberta",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"added_tokens.json",
"bpe.codes",
"config.json",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | Ahmed59 | 19 | transformers | |
AimB/konlpy_berttokenizer_helsinki | 2021-04-26T14:33:19.000Z | [] | [
".gitattributes",
"BertStyleMecab/aihub-vocab.txt",
"BertStyleMecab/helsinki-vocab.txt",
"BertStyleMecab/notag-vocab.txt"
] | AimB | 0 | |||
AimB/mT5-en-kr-aihub-netflix | 2021-04-27T01:00:11.000Z | [] | [
".gitattributes",
"outputs/config.json",
"outputs/eval_results.txt",
"outputs/model_args.json",
"outputs/pytorch_model.bin",
"outputs/special_tokens_map.json",
"outputs/spiece.model",
"outputs/tokenizer_config.json",
"outputs/training_args.bin",
"outputs/training_progress_scores.csv",
"outputs/best_model/config.json",
"outputs/best_model/eval_results.txt",
"outputs/best_model/model_args.json",
"outputs/best_model/optimizer.pt",
"outputs/best_model/pytorch_model.bin",
"outputs/best_model/scheduler.pt",
"outputs/best_model/special_tokens_map.json",
"outputs/best_model/spiece.model",
"outputs/best_model/tokenizer_config.json",
"outputs/best_model/training_args.bin",
"outputs/checkpoint-50796-epoch-1/config.json",
"outputs/checkpoint-50796-epoch-1/model_args.json",
"outputs/checkpoint-50796-epoch-1/optimizer.pt",
"outputs/checkpoint-50796-epoch-1/pytorch_model.bin",
"outputs/checkpoint-50796-epoch-1/scheduler.pt",
"outputs/checkpoint-50796-epoch-1/special_tokens_map.json",
"outputs/checkpoint-50796-epoch-1/spiece.model",
"outputs/checkpoint-50796-epoch-1/tokenizer_config.json",
"outputs/checkpoint-50796-epoch-1/training_args.bin"
] | AimB | 0 | |||
AimB/mT5-en-kr-natural | 2021-04-28T12:47:22.000Z | [
"pytorch",
"mt5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"README.md",
"config.json",
"eval.py",
"eval_results.txt",
"model_args.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json",
"training_args.bin",
"training_progress_scores.csv",
"best_model/config.json",
"best_model/eval_results.txt",
"best_model/model_args.json",
"best_model/optimizer.pt",
"best_model/pytorch_model.bin",
"best_model/scheduler.pt",
"best_model/special_tokens_map.json",
"best_model/spiece.model",
"best_model/tokenizer_config.json",
"best_model/training_args.bin",
"checkpoint-50796-epoch-1/config.json",
"checkpoint-50796-epoch-1/model_args.json",
"checkpoint-50796-epoch-1/optimizer.pt",
"checkpoint-50796-epoch-1/pytorch_model.bin",
"checkpoint-50796-epoch-1/scheduler.pt",
"checkpoint-50796-epoch-1/special_tokens_map.json",
"checkpoint-50796-epoch-1/spiece.model",
"checkpoint-50796-epoch-1/tokenizer_config.json",
"checkpoint-50796-epoch-1/training_args.bin"
] | AimB | 57 | transformers | you can use this model with simpletransfomers.
```
!pip install simpletransformers
from simpletransformers.t5 import T5Model
model = T5Model("mt5", "AimB/mT5-en-kr-natural")
print(model.predict(["I feel good today"]))
print(model.predict(["우리집 고양이는 세상에서 제일 귀엽습니다"]))
``` |
AimB/mT5-en-kr-opus | 2021-04-28T09:35:07.000Z | [] | [
".gitattributes",
"eval_results.txt"
] | AimB | 0 | |||
Akashpb13/xlsr_maltese_wav2vec2 | 2021-04-01T17:44:58.000Z | [
"pytorch",
"wav2vec2",
"mt",
"dataset:common_voice",
"transformers",
"audio",
"automatic-speech-recognition",
"speech",
"xlsr-fine-tuning-week",
"license:apache-2.0"
] | automatic-speech-recognition | [
".gitattributes",
"README.md",
"config.json",
"preprocessor_config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] | Akashpb13 | 18 | transformers | ---
language: mt
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Maltese by Akash PB
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice mt
type: common_voice
args: {lang_id}
metrics:
- name: Test WER
type: wer
value: 29.42
---
# Wav2Vec2-Large-XLSR-53-Maltese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Maltese using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
model_name = "Akashpb13/xlsr_maltese_wav2vec2"
device = "cuda"
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\)\\(\\*)]'
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)
ds = load_dataset("common_voice", "mt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
**Test Result**: 29.42 %
|
Al/mymodel | 2021-02-09T17:55:49.000Z | [] | [
".gitattributes"
] | Al | 0 | |||
Alaeddin/convbert-base-turkish-ner-cased | 2021-04-13T20:20:58.000Z | [
"pytorch",
"convbert",
"token-classification",
"transformers"
] | token-classification | [
".gitattributes",
"README.md",
"all_results.json",
"config.json",
"eval_results.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"train_results.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Alaeddin | 39 | transformers | |
Alberto15Romero/GptNeo | 2021-06-15T09:26:49.000Z | [] | [
".gitattributes"
] | Alberto15Romero | 0 | |||
Alessandro/model_name | 2021-05-08T10:24:02.000Z | [] | [
".gitattributes"
] | Alessandro | 0 | |||
AlexDemon/Alex | 2021-02-28T09:17:33.000Z | [] | [
".gitattributes"
] | AlexDemon | 0 | |||
AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru | 2021-06-13T19:37:16.000Z | [
"pytorch",
"xlm-roberta",
"question-answering",
"transformers"
] | question-answering | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | AlexKay | 27 | transformers |