Datasets:

Languages:
English
ArXiv:
License:
File size: 6,255 Bytes
93611e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124c419
 
 
93611e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124c419
93611e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""GrailQA: The Strongly Generalizable Question Answering Dataset"""

from __future__ import absolute_import, division, print_function

import json
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@misc{gu2020iid,
    title={Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases},
    author={Yu Gu and Sue Kase and Michelle Vanni and Brian Sadler and Percy Liang and Xifeng Yan and Yu Su},
    year={2020},
    eprint={2011.07743},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
Strongly Generalizable Question Answering (GrailQA) is a new large-scale, \
high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated \
with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). \
It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.
"""

_URL = "https://dl.orangedox.com/WyaCpL?dl=1"


class GrailQA(datasets.GeneratorBasedBuilder):
    """GrailQA: The Strongly Generalizable Question Answering Dataset"""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "qid": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answer": datasets.features.Sequence(
                        {
                            "answer_type": datasets.Value("string"),
                            "answer_argument": datasets.Value("string"),
                            "entity_name": datasets.Value("string"),
                        }
                    ),
                    "function": datasets.Value("string"),
                    "num_node": datasets.Value("int32"),
                    "num_edge": datasets.Value("int32"),
                    "graph_query": {
                        "nodes": datasets.features.Sequence(
                            {
                                "nid": datasets.Value("int32"),
                                "node_type": datasets.Value("string"),
                                "id": datasets.Value("string"),
                                "class": datasets.Value("string"),
                                "friendly_name": datasets.Value("string"),
                                "question_node": datasets.Value("int32"),
                                "function": datasets.Value("string"),
                            }
                        ),
                        "edges": datasets.features.Sequence(
                            {
                                "start": datasets.Value("int32"),
                                "end": datasets.Value("int32"),
                                "relation": datasets.Value("string"),
                                "friendly_name": datasets.Value("string"),
                            }
                        ),
                    },
                    "sparql_query": datasets.Value("string"),
                    "domains": datasets.features.Sequence(datasets.Value("string")),
                    "level": datasets.Value("string"),
                    "s_expression": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://dki-lab.github.io/GrailQA/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_path = os.path.join(dl_manager.download_and_extract(_URL), "GrailQA_v1.0")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_train.json")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_dev.json")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_test_public.json")},
            ),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            samples = json.load(f)
            for sample in samples:
                features = {
                    "qid": str(sample["qid"]),
                    "question": sample["question"],
                    "function": sample.get("function", ""),
                    "num_node": sample.get("num_node", -1),
                    "num_edge": sample.get("num_edge", -1),
                    "graph_query": sample.get("graph_query", {"nodes": [], "edges": []}),
                    "sparql_query": sample.get("sparql_query", ""),
                    "domains": sample.get("domains", []),
                    "level": sample.get("level", ""),
                    "s_expression": sample.get("s_expression", ""),
                }

                answers = sample.get("answer", [])
                for answer in answers:
                    if "entity_name" not in answer:
                        answer["entity_name"] = ""

                features["answer"] = answers
                yield sample["qid"], features