Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
knowledge-base-qa
License:
File size: 6,190 Bytes
93611e5 124c419 93611e5 124c419 93611e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""GrailQA: The Strongly Generalizable Question Answering Dataset"""
import json
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{gu2020iid,
title={Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases},
author={Yu Gu and Sue Kase and Michelle Vanni and Brian Sadler and Percy Liang and Xifeng Yan and Yu Su},
year={2020},
eprint={2011.07743},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
Strongly Generalizable Question Answering (GrailQA) is a new large-scale, \
high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated \
with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). \
It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.
"""
_URL = "https://dl.orangedox.com/WyaCpL?dl=1"
class GrailQA(datasets.GeneratorBasedBuilder):
"""GrailQA: The Strongly Generalizable Question Answering Dataset"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"qid": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.features.Sequence(
{
"answer_type": datasets.Value("string"),
"answer_argument": datasets.Value("string"),
"entity_name": datasets.Value("string"),
}
),
"function": datasets.Value("string"),
"num_node": datasets.Value("int32"),
"num_edge": datasets.Value("int32"),
"graph_query": {
"nodes": datasets.features.Sequence(
{
"nid": datasets.Value("int32"),
"node_type": datasets.Value("string"),
"id": datasets.Value("string"),
"class": datasets.Value("string"),
"friendly_name": datasets.Value("string"),
"question_node": datasets.Value("int32"),
"function": datasets.Value("string"),
}
),
"edges": datasets.features.Sequence(
{
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"relation": datasets.Value("string"),
"friendly_name": datasets.Value("string"),
}
),
},
"sparql_query": datasets.Value("string"),
"domains": datasets.features.Sequence(datasets.Value("string")),
"level": datasets.Value("string"),
"s_expression": datasets.Value("string"),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://dki-lab.github.io/GrailQA/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_path = os.path.join(dl_manager.download_and_extract(_URL), "GrailQA_v1.0")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_train.json")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_dev.json")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_test_public.json")},
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
samples = json.load(f)
for sample in samples:
features = {
"qid": str(sample["qid"]),
"question": sample["question"],
"function": sample.get("function", ""),
"num_node": sample.get("num_node", -1),
"num_edge": sample.get("num_edge", -1),
"graph_query": sample.get("graph_query", {"nodes": [], "edges": []}),
"sparql_query": sample.get("sparql_query", ""),
"domains": sample.get("domains", []),
"level": sample.get("level", ""),
"s_expression": sample.get("s_expression", ""),
}
answers = sample.get("answer", [])
for answer in answers:
if "entity_name" not in answer:
answer["entity_name"] = ""
features["answer"] = answers
yield sample["qid"], features
|