Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
dongguanting commited on
Commit
7a73add
1 Parent(s): 68145d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -5
README.md CHANGED
@@ -1,5 +1,36 @@
1
- ---
2
- language:
3
- - en
4
- license: mit
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ ---
6
+
7
+
8
+ # <div align="center">🔥Toward General Instruction-Following Alignment for Retrieval-Augmented Generation<div>
9
+
10
+ <p align="center">
11
+ 🤖️ <a href="https://followrag.github.io/" target="_blank">Website</a> • 🤗 <a href="https://huggingface.co/datasets/dongguanting/VIF-RAG-QA-110K" target="_blank">VIF-RAG-QA-110K</a> • 👉 <a href="https://huggingface.co/datasets/dongguanting/VIF-RAG-QA-20K" target="_blank">VIF-RAG-QA-20K</a> • 📖 <a href="https://arxiv.org/abs/2410.09584" target="_blank">Arxiv</a> • 🤗 <a href="https://huggingface.co/papers/2410.09584" target="_blank">HF-Paper</a> <br>
12
+ </p>
13
+
14
+ We propose a instruction-following alignement pipline named **VIF-RAG framework** and auto-evaluation Benchmark named **FollowRAG**:
15
+
16
+ - **IF-RAG:** It is the first automated, scalable, and verifiable data synthesis pipeline for aligning complex instruction-following in RAG scenarios. VIF-RAG integrates a verification process at each step of data augmentation and combination. We begin by manually creating a minimal set of atomic instructions (<100) and then apply steps including instruction composition, quality verification, instruction-query combination, and dual-stage verification to generate a large-scale, high-quality VIF-RAG-QA dataset (>100K).
17
+
18
+ - **FollowRAG:** To address the gap in instruction-following auto-evaluation for RAG systems, we introduce FollowRAG Benchmark, which includes approximately 3K test samples, covering 22 categories of general instruction constraints and 4 knowledge-intensive QA datasets. Due to its robust pipeline design, FollowRAG can seamlessly integrate with different RAG benchmarks
19
+
20
+
21
+
22
+ ## 🎖 Citation
23
+
24
+ Please cite our work if you find the repository helpful.
25
+
26
+ ```
27
+ @misc{dong2024general,
28
+ title={Toward General Instruction-Following Alignment for Retrieval-Augmented Generation},
29
+ author={Guanting Dong and Xiaoshuai Song and Yutao Zhu and Runqi Qiao and Zhicheng Dou and Ji-Rong Wen},
30
+ year={2024},
31
+ eprint={2410.09584},
32
+ archivePrefix={arXiv},
33
+ primaryClass={cs.CL},
34
+ url={https://arxiv.org/abs/2410.09584},
35
+ }
36
+ ```