File size: 4,021 Bytes
034b730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from dora import DoraStatus
import os
import pyarrow as pa


import requests

import os

import base64
import requests
from io import BytesIO
import numpy as np
import cv2


def encode_numpy_image(np_image):
    # Convert the NumPy array to a PIL Image
    cv2.resize(np_image, (512, 512))
    _, buffer = cv2.imencode(
        ".png", np_image
    )  # You can change '.png' to another format if needed

    # Convert the buffer to a byte stream
    byte_stream = BytesIO(buffer)

    # Encode the byte stream to base64
    base64_encoded_image = base64.b64encode(byte_stream.getvalue()).decode("utf-8")
    return base64_encoded_image


CAMERA_WIDTH = 640
CAMERA_HEIGHT = 480

API_KEY = os.getenv("OPENAI_API_KEY")


MESSAGE_SENDER_TEMPLATE = """
You control a robot. Don't get too close to objects.

{user_message}

Respond with only one of the following actions:
- FORWARD
- BACKWARD
- TURN_RIGHT
- TURN_LEFT
- NOD_YES
- NOD_NO
- STOP

You're last 5 actions where: 
{actions}
"""


import time


def understand_image(image, user_message, actions):
    # Getting the base64 string
    base64_image = encode_numpy_image(image)
    headers = {"Content-Type": "application/json", "Authorization": f"Bearer {API_KEY}"}

    now = time.time()
    payload = {
        "model": "gpt-4-vision-preview",
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": MESSAGE_SENDER_TEMPLATE.format(
                            user_message="\n".join(user_message),
                            actions="\n".join(actions[:-5]),
                        ),
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}",
                            "detail": "low",
                        },
                    },
                ],
            }
        ],
        "max_tokens": 50,
    }

    response = requests.post(
        "https://api.openai.com/v1/chat/completions", headers=headers, json=payload
    )

    print("resp:", time.time() - now)
    return response.json()["choices"][0]["message"]["content"]


class Operator:
    def __init__(self):
        self.actions = []
        self.instruction = []

    def on_event(
        self,
        dora_event,
        send_output,
    ) -> DoraStatus:
        if dora_event["type"] == "INPUT":
            if dora_event["id"] == "image":
                image = (
                    dora_event["value"]
                    .to_numpy()
                    .reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
                    .copy()
                )
                output = understand_image(image, self.instruction, self.actions)
                self.actions.append(output)
                print("response: ", output, flush=True)

                send_output(
                    "assistant_message",
                    pa.array([f"{output}"]),
                    dora_event["metadata"],
                )
            elif dora_event["id"] == "instruction":
                self.instruction.append(dora_event["value"][0].as_py())
                print("instructions: ", self.instruction, flush=True)
        return DoraStatus.CONTINUE


if __name__ == "__main__":
    op = Operator()

    # Path to the current file
    current_file_path = __file__

    # Directory of the current file
    current_directory = os.path.dirname(current_file_path)

    path = current_directory + "/test_image.jpg"

    op.on_event(
        {
            "type": "INPUT",
            "id": "code_modifier",
            "value": pa.array(
                [
                    {
                        "path": path,
                        "user_message": "change planning to make gimbal follow bounding box ",
                    },
                ]
            ),
            "metadata": [],
        },
        print,
    )