File size: 5,756 Bytes
034b730
23f48d8
034b730
 
 
 
357c750
 
034b730
 
 
 
 
 
357c750
034b730
 
 
23f48d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
034b730
 
 
 
 
 
 
 
 
 
 
23f48d8
 
034b730
 
 
 
 
 
 
 
 
23f48d8
 
 
 
 
 
 
034b730
 
 
 
 
357c750
034b730
 
357c750
034b730
8852f54
 
 
 
 
 
 
 
 
034b730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357c750
034b730
 
 
 
 
357c750
034b730
 
 
 
 
23f48d8
 
 
 
 
 
034b730
 
 
 
357c750
 
 
 
034b730
 
 
 
23f48d8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import cv2
import numpy as np

from dora import DoraStatus


CAMERA_WIDTH = 960
CAMERA_HEIGHT = 540

FONT = cv2.FONT_HERSHEY_SIMPLEX

writer = cv2.VideoWriter(
    "output01.avi",
    cv2.VideoWriter_fourcc(*"MJPG"),
    60,
    (CAMERA_WIDTH, CAMERA_HEIGHT),
)

GOAL_OBJECTIVES = [10, 0]

import numpy as np


def find_largest_gap_midpoint(bboxes, image_width, goal_x):
    """
    Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.

    Parameters:
    - bboxes (np.array): A numpy array where each row represents a bounding box with
                         the format [min_x, min_y, max_x, max_y, confidence, label].
    - image_width (int): The width of the image in pixels.

    Returns:
    - int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
    """
    if bboxes.size == 0:
        # No bounding boxes, return the midpoint of the image as the largest gap
        return image_width // 2

    events = []
    for bbox in bboxes:
        min_x, max_x = bbox[0], bbox[2]
        events.append((min_x, "enter"))
        events.append((max_x, "exit"))

    # Include image boundaries as part of the events
    events.append(
        (0, "exit")
    )  # Start of the image, considered an 'exit' point for logic simplicity
    events.append(
        (image_width, "enter")
    )  # End of the image, considered an 'enter' point

    # Sort events, with exits before enters at the same position to ensure gap calculation correctness
    events.sort(key=lambda x: (x[0], x[1] == "enter"))

    # Sweep line algorithm to find the largest gap
    current_boxes = 1
    last_x = 0
    largest_gap = 0
    gap_start_x = None
    largest_gap_mid = None  # Midpoint of the largest gap

    for x, event_type in events:
        if current_boxes == 0 and gap_start_x is not None:
            # Calculate gap
            gap = x - gap_start_x
            if gap > largest_gap:
                largest_gap = gap
                gap_end_x = gap_start_x + x
                largest_gap_mid = (gap_start_x + x) // 2
                if goal_x < gap_end_x and goal_x > gap_start_x:
                    return goal_x
                return largest_gap_mid
                # elif goal_x > gap_end_x:
                # return max(gap_end_x - 50, largest_gap_mid)
                # elif goal_x < gap_start_x:
                # return min(gap_start_x + 50, largest_gap_mid)

        if event_type == "enter":
            current_boxes += 1
            if current_boxes == 1:
                gap_start_x = None  # No longer in a gap
        elif event_type == "exit":
            current_boxes -= 1
            if current_boxes == 0:
                gap_start_x = x  # Start of a potential gap

    return largest_gap_mid


class Operator:
    """
    Plot image and bounding box
    """

    def __init__(self):
        self.bboxs = []
        self.buffer = ""
        self.submitted = []
        self.lines = []
        self.gap_x = CAMERA_WIDTH // 2
        self.position = [0, 0, 0]

    def on_event(
        self,
        dora_event,
        send_output,
    ):
        if dora_event["type"] == "INPUT":
            id = dora_event["id"]
            value = dora_event["value"]

            if id == "position":

                value = dora_event["value"].to_numpy()
                [x, y, z] = value
                self.position = [x, y, z]

            if id == "image":

                image = (
                    value.to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)).copy()
                )
                cv2.resize(image, (CAMERA_HEIGHT * 2, CAMERA_WIDTH * 2))

                cv2.putText(
                    image, self.buffer, (20, 14 + 15 * 25), FONT, 0.5, (190, 250, 0), 2
                )
                cv2.putText(
                    image,
                    f"pos: {self.position}",
                    (20, 20),
                    FONT,
                    0.5,
                    (190, 250, 100),
                    2,
                )

                i = 0
                for text in self.submitted[::-1]:
                    color = (
                        (0, 255, 190)
                        if text["role"] == "user_message"
                        else (0, 190, 255)
                    )
                    cv2.putText(
                        image,
                        text["content"],
                        (
                            20,
                            14 + (13 - i) * 25,
                        ),
                        FONT,
                        0.5,
                        color,
                        2,
                    )
                    i += 1
                writer.write(image)
                cv2.resize(image, (CAMERA_HEIGHT * 3, CAMERA_WIDTH * 3))
                cv2.imshow("frame", image)
                if cv2.waitKey(1) & 0xFF == ord("q"):
                    return DoraStatus.STOP
            elif id == "keyboard_buffer":
                self.buffer = value[0].as_py()
            elif id == "bbox":
                self.bboxs = value.to_numpy().reshape((-1, 6))

                self.gap_x = find_largest_gap_midpoint(
                    self.bboxs, image_width=CAMERA_WIDTH, goal_x=10
                )
            elif "message" in id:
                self.submitted += [
                    {
                        "role": id,
                        "content": value[0]
                        .as_py()
                        .replace("\n", " ")
                        .replace("- ", ""),
                    }
                ]

        return DoraStatus.CONTINUE


## Angle = Arctan Proj Object y / x

## Relation linearire 0 - 60 ; 0 - CAMERA_WIDTH