File size: 4,236 Bytes
1646f18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
from dora import DoraStatus
import pyarrow as pa
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig
import torch
import time
CAMERA_WIDTH = 960
CAMERA_HEIGHT = 540
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
BAD_WORDS_IDS = PROCESSOR.tokenizer(
["<image>", "<fake_token_around_image>"], add_special_tokens=False
).input_ids
EOS_WORDS_IDS = PROCESSOR.tokenizer(
"<end_of_utterance>", add_special_tokens=False
).input_ids + [PROCESSOR.tokenizer.eos_token_id]
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceM4/idefics2-tfrm-compatible-AWQ",
quantization_config=AwqConfig(
bits=4,
fuse_max_seq_len=4096,
modules_to_fuse={
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
"mlp": ["gate_proj", "up_proj", "down_proj"],
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
"use_alibi": False,
"num_attention_heads": 32,
"num_key_value_heads": 8,
"hidden_size": 4096,
},
),
trust_remote_code=True,
).to("cuda")
def reset_awq_cache(model):
"""
Simple method to reset the AWQ fused modules cache
"""
from awq.modules.fused.attn import QuantAttentionFused
for name, module in model.named_modules():
if isinstance(module, QuantAttentionFused):
module.start_pos = 0
def ask_vlm(image, instruction):
global model
prompts = [
"User:",
image,
f"{instruction}.<end_of_utterance>\n",
"Assistant:",
]
inputs = {k: torch.tensor(v).to("cuda") for k, v in PROCESSOR(prompts).items()}
generated_ids = model.generate(
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=25, repetition_penalty=1.2
)
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
reset_awq_cache(model)
return generated_texts[0].split("\nAssistant: ")[1]
class Operator:
def __init__(self):
self.state = "person"
self.last_output = False
def on_event(
self,
dora_event,
send_output,
) -> DoraStatus:
if dora_event["type"] == "INPUT":
image = (
dora_event["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
)
if self.state == "person":
output = ask_vlm(image, "Can you read the note?").lower()
print(output, flush=True)
if "coffee" in output or "tea" in output or "water" in output:
send_output(
"control",
pa.array([-3.0, 0.0, 0.0, 0.8, 0.0, 10.0, 180.0]),
)
send_output(
"speak",
pa.array([output + ". Going to the kitchen."]),
)
time.sleep(10)
self.state = "coffee"
self.last_output = False
elif not self.last_output:
self.last_output = True
send_output(
"speak",
pa.array([output]),
)
time.sleep(4)
elif self.state == "coffee":
output = ask_vlm(image, "Is there a person with a hands up?").lower()
print(output, flush=True)
if "yes" in output:
send_output(
"speak",
pa.array([output + ". Going to the office."]),
)
send_output(
"control",
pa.array([2.0, 0.0, 0.0, 0.8, 0.0, 10.0, 0.0]),
)
time.sleep(10)
self.state = "person"
self.last_output = False
elif not self.last_output:
self.last_output = True
send_output(
"speak",
pa.array([output]),
)
time.sleep(4)
return DoraStatus.CONTINUE
|