File size: 1,554 Bytes
1646f18 3c8b0eb 1646f18 3c8b0eb 1646f18 3c8b0eb 1646f18 3c8b0eb 1646f18 3c8b0eb 1646f18 3c8b0eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
import pygame
from dora import DoraStatus
model = ParlerTTSForConditionalGeneration.from_pretrained(
"ylacombe/parler-tts-mini-jenny-30H"
).to("cuda:0")
tokenizer = AutoTokenizer.from_pretrained("ylacombe/parler-tts-mini-jenny-30H")
pygame.mixer.init()
input_ids = tokenizer(
"Jenny delivers her words quite expressively, in a very confined sounding environment with clear audio quality.",
return_tensors="pt",
).input_ids.to("cuda:0")
class Operator:
def on_event(
self,
dora_event,
send_output,
):
if dora_event["type"] == "INPUT":
generation = model.generate(
input_ids=input_ids,
min_new_tokens=100,
prompt_input_ids=tokenizer(
dora_event["value"][0].as_py(), return_tensors="pt"
).input_ids.to("cuda:0"),
)
print(dora_event["value"][0].as_py(), flush=True)
sf.write(
f"parler_tts_out.wav",
generation.cpu().numpy().squeeze(),
model.config.sampling_rate,
)
pygame.mixer.music.load(f"parler_tts_out.wav")
pygame.mixer.music.play()
while pygame.mixer.get_busy():
pass
return DoraStatus.CONTINUE
# op = Operator()
# import pyarrow as pa
# op.on_event({"type": "INPUT", "value": pa.array(["Hello, how are you?"])}, None)
|