File size: 6,721 Bytes
fe79d42
 
 
 
037f860
fe79d42
0827444
 
fe79d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
037f860
 
fe79d42
 
 
 
 
 
 
 
c3afd26
fe79d42
 
 
 
 
 
 
 
037f860
 
fe79d42
 
037f860
 
8852f54
fe79d42
c3afd26
8852f54
 
 
 
 
fe79d42
8852f54
fe79d42
 
 
 
8852f54
 
 
 
fe79d42
8852f54
 
 
fe79d42
0827444
037f860
 
 
 
23f48d8
 
8852f54
 
 
 
 
 
fe79d42
 
 
c3afd26
fe79d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3afd26
 
 
 
 
0827444
 
 
 
 
 
 
 
c3afd26
 
 
 
 
 
 
 
fe79d42
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import time
import numpy as np
import pyarrow as pa
from dora import DoraStatus
from constants import LOCATION

CAMERA_WIDTH = 1280
CAMERA_HEIGHT = 720


def check_clear_road(bboxes, image_width, goal_x):
    """
    Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.

    Parameters:
    - bboxes (np.array): A numpy array where each row represents a bounding box with
                         the format [min_x, min_y, max_x, max_y, confidence, label].
    - image_width (int): The width of the image in pixels.

    Returns:
    - int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
    """
    if bboxes.size == 0:
        # No bounding boxes, return the midpoint of the image as the largest gap
        return goal_x

    events = []
    for bbox in bboxes:
        min_x, max_x = bbox[0], bbox[2]
        events.append((min_x, "enter"))
        events.append((max_x, "exit"))

    # Include image boundaries as part of the events
    events.append(
        (0, "exit")
    )  # Start of the image, considered an 'exit' point for logic simplicity
    events.append(
        (image_width, "enter")
    )  # End of the image, considered an 'enter' point

    # Sort events, with exits before enters at the same position to ensure gap calculation correctness
    events.sort(key=lambda x: (x[0], x[1] == "enter"))

    # Sweep line algorithm to find the largest gap
    current_boxes = 1
    last_x = 0
    largest_gap = 0
    gap_start_x = None
    largest_gap_mid = None  # Midpoint of the largest gap

    for x, event_type in events:
        if current_boxes == 0 and gap_start_x is not None:
            # Calculate gap
            gap = x - gap_start_x
            gap_end_x = gap_start_x + x
            if goal_x < gap_end_x and goal_x > gap_start_x:
                return True
            elif goal_x < gap_start_x:
                return False
        if event_type == "enter":
            current_boxes += 1
            if current_boxes == 1:
                gap_start_x = None  # No longer in a gap
        elif event_type == "exit":
            current_boxes -= 1
            if current_boxes == 0:
                gap_start_x = x  # Start of a potential gap

    return False


class Operator:
    def __init__(self):
        self.bboxs = None
        self.time = time.time()
        self.position = [0, 0, 0]
        self.waypoints = None
        self.tf = np.array([[1, 0], [0, 1]])
        self.count = 0
        self.completed = True
        self.image = None
        self.goal = ""
        self.current_location = "HOME"

    def on_event(
        self,
        dora_event: dict,
        send_output,
    ) -> DoraStatus:
        if dora_event["type"] == "INPUT":
            id = dora_event["id"]
            if id == "image":
                value = dora_event["value"].to_numpy()

                self.image = value.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
            elif id == "control_reply":
                value = dora_event["value"].to_numpy()[0]
                if value == self.count:
                    self.completed = True
            elif id == "set_goal":
                self.goal = dora_event["value"][0].as_py()
                print("got goal:", self.goal, flush=True)

                if len(dora_event["value"]) > 0:
                    if self.goal != "":
                        self.waypoints = LOCATION[self.current_location][self.goal]

            elif id == "position":
                print("got position:", dora_event["value"], flush=True)
                value = dora_event["value"].to_numpy()
                [x, y, z] = value
                self.position = [x, y, z]
                if self.image is None:
                    print("no image", flush=True)
                    return DoraStatus.CONTINUE
                ## No bounding box yet
                if self.completed == False:
                    print("not completed", flush=True)
                    return DoraStatus.CONTINUE

                if self.waypoints is None:
                    print("no waypoint", flush=True)
                    return DoraStatus.CONTINUE
                # Set Waypoints to None if goal reached
                # Remove waypoints if completed
                elif (
                    self.waypoints.shape[0] == 1
                    and np.linalg.norm(self.waypoints[0] - np.array([x, y])) < 0.2
                ):
                    print(f"goal {self.goal} reached", flush=True)
                    self.current_location = self.goal
                    send_output(
                        f"reached_{self.goal.lower()}", pa.array(self.image.ravel())
                    )
                    self.waypoints = None
                    return DoraStatus.CONTINUE
                elif (
                    self.waypoints.size > 0
                    and np.linalg.norm(self.waypoints[0] - np.array([x, y])) < 0.1
                ):
                    self.waypoints = self.waypoints[1:]
                    print("removing waypoints", flush=True)

                z = np.deg2rad(z)
                self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
                goal = self.tf.dot(self.waypoints[0] - np.array([x, y]))
                goal_camera_x = (
                    CAMERA_WIDTH * np.arctan2(goal[1], goal[0]) / np.pi
                ) + CAMERA_WIDTH / 2
                goal_angle = np.arctan2(goal[1], goal[0]) * 180 / np.pi
                print(
                    "position",
                    [x, y],
                    "goal:",
                    goal,
                    "Goal angle: ",
                    np.arctan2(goal[1], goal[0]) * 180 / np.pi,
                    "z: ",
                    np.rad2deg(z),
                    "x: ",
                    goal_camera_x,
                    "count: ",
                    self.count,
                    flush=True,
                )

                self.count += 1
                self.completed = False

                message = pa.array(
                    [
                        self.waypoints[0][0] - x,
                        self.waypoints[0][1] - y,
                        0.0,  # -goal_angle,
                        0.8,
                        0.0,  # 50,
                        10.0,
                        float(int(goal_angle)),
                        self.count,
                    ]
                )
                print("sending:", message, flush=True)
                send_output(
                    "control",
                    message,
                    dora_event["metadata"],
                )

        return DoraStatus.CONTINUE