|
from dora import DoraStatus |
|
import pylcs |
|
import os |
|
import pyarrow as pa |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import json |
|
|
|
import re |
|
import time |
|
|
|
import torch |
|
import requests |
|
|
|
from io import BytesIO |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
|
|
from transformers.image_utils import ( |
|
to_numpy_array, |
|
PILImageResampling, |
|
ChannelDimension, |
|
) |
|
from transformers.image_transforms import resize, to_channel_dimension_format |
|
|
|
API_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
DEVICE = torch.device("cuda") |
|
PROCESSOR = AutoProcessor.from_pretrained( |
|
"HuggingFaceM4/tr_272_bis_opt_step_15000_merge", |
|
token=API_TOKEN, |
|
) |
|
MODEL = AutoModelForCausalLM.from_pretrained( |
|
"HuggingFaceM4/tr_272_bis_opt_step_15000_merge", |
|
token=API_TOKEN, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
).to(DEVICE) |
|
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents |
|
BOS_TOKEN = PROCESSOR.tokenizer.bos_token |
|
BAD_WORDS_IDS = PROCESSOR.tokenizer( |
|
["<image>", "<fake_token_around_image>"], add_special_tokens=False |
|
).input_ids |
|
|
|
|
|
CHATGPT = True |
|
MODEL_NAME_OR_PATH = "TheBloke/deepseek-coder-6.7B-instruct-GPTQ" |
|
|
|
MESSAGE_SENDER_TEMPLATE = """ |
|
### Instruction |
|
You're a json expert. Format your response as a json with a topic and a data field in a ```json block. No explaination needed. No code needed. |
|
The schema for those json are: |
|
- forward |
|
- backward |
|
- left |
|
- right |
|
|
|
The response should look like this: |
|
```json |
|
|
|
[ |
|
{{ "topic": "control", "data": "forward" }}, |
|
] |
|
``` |
|
|
|
{user_message} |
|
|
|
### Response: |
|
""" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
revision="main", |
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) |
|
|
|
|
|
def extract_json_code_blocks(text): |
|
""" |
|
Extracts json code blocks from the given text that are enclosed in triple backticks with a json language identifier. |
|
|
|
Parameters: |
|
- text: A string that may contain one or more json code blocks. |
|
|
|
Returns: |
|
- A list of strings, where each string is a block of json code extracted from the text. |
|
""" |
|
pattern = r"```json\n(.*?)\n```" |
|
matches = re.findall(pattern, text, re.DOTALL) |
|
if len(matches) == 0: |
|
pattern = r"```json\n(.*?)(?:\n```|$)" |
|
matches = re.findall(pattern, text, re.DOTALL) |
|
if len(matches) == 0: |
|
return [text] |
|
|
|
return matches |
|
|
|
|
|
from openai import OpenAI |
|
import os |
|
|
|
import base64 |
|
import requests |
|
|
|
API_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
|
|
def encode_image(image_path): |
|
with open(image_path, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode("utf-8") |
|
|
|
|
|
def understand_image(image_path): |
|
|
|
|
|
base64_image = encode_image(image_path) |
|
|
|
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"} |
|
|
|
payload = { |
|
"model": "gpt-4-vision-preview", |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": "What’s in this image? Describe it in a short sentence", |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, |
|
}, |
|
], |
|
} |
|
], |
|
"max_tokens": 300, |
|
} |
|
|
|
response = requests.post( |
|
"https://api.openai.com/v1/chat/completions", headers=headers, json=payload |
|
) |
|
|
|
print(response.json()["choices"][0]["message"]["content"]) |
|
|
|
|
|
class Operator: |
|
|
|
def on_event( |
|
self, |
|
dora_event, |
|
send_output, |
|
) -> DoraStatus: |
|
if dora_event["type"] == "INPUT" and dora_event["id"] == "message_sender": |
|
user_message = dora_event["value"][0].as_py() |
|
output = self.ask_llm( |
|
MESSAGE_SENDER_TEMPLATE.format(user_message=user_message) |
|
) |
|
outputs = extract_json_code_blocks(output)[0] |
|
print("response: ", output, flush=True) |
|
try: |
|
outputs = json.loads(outputs) |
|
if not isinstance(outputs, list): |
|
outputs = [outputs] |
|
for output in outputs: |
|
if not isinstance(output["data"], list): |
|
output["data"] = [output["data"]] |
|
|
|
if output["topic"] in ["led", "blaster"]: |
|
send_output( |
|
output["topic"], |
|
pa.array(output["data"]), |
|
dora_event["metadata"], |
|
) |
|
|
|
send_output( |
|
"assistant_message", |
|
pa.array([f"sent: {output}"]), |
|
dora_event["metadata"], |
|
) |
|
else: |
|
send_output( |
|
"assistant_message", |
|
pa.array( |
|
[f"Could not send as topic was not available: {output}"] |
|
), |
|
dora_event["metadata"], |
|
) |
|
except: |
|
send_output( |
|
"assistant_message", |
|
pa.array([f"Could not parse json: {outputs}"]), |
|
dora_event["metadata"], |
|
) |
|
|
|
return DoraStatus.CONTINUE |
|
|
|
def ask_llm(self, prompt): |
|
|
|
|
|
|
|
input = tokenizer(prompt, return_tensors="pt") |
|
input_ids = input.input_ids.cuda() |
|
|
|
|
|
attention_mask = input["attention_mask"] |
|
|
|
output = model.generate( |
|
inputs=input_ids, |
|
temperature=0.7, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=40, |
|
max_new_tokens=512, |
|
attention_mask=attention_mask, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
|
|
return tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt) :] |
|
|
|
def ask_chatgpt(self, prompt): |
|
from openai import OpenAI |
|
|
|
client = OpenAI() |
|
print("---asking chatgpt: ", prompt, flush=True) |
|
response = client.chat.completions.create( |
|
model="gpt-4-turbo-preview", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
) |
|
answer = response.choices[0].message.content |
|
|
|
print("Done", flush=True) |
|
return answer |
|
|
|
|
|
if __name__ == "__main__": |
|
op = Operator() |
|
|
|
|
|
current_file_path = __file__ |
|
|
|
|
|
current_directory = os.path.dirname(current_file_path) |
|
|
|
path = current_directory + "/planning_op.py" |
|
with open(path, "r", encoding="utf8") as f: |
|
raw = f.read() |
|
|
|
op.on_event( |
|
{ |
|
"type": "INPUT", |
|
"id": "code_modifier", |
|
"value": pa.array( |
|
[ |
|
{ |
|
"path": path, |
|
"user_message": "change planning to make gimbal follow bounding box ", |
|
}, |
|
] |
|
), |
|
"metadata": [], |
|
}, |
|
print, |
|
) |
|
|