|
import os |
|
import torch |
|
import requests |
|
|
|
from io import BytesIO |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
|
|
from transformers.image_utils import ( |
|
to_numpy_array, |
|
PILImageResampling, |
|
ChannelDimension, |
|
) |
|
from transformers.image_transforms import resize, to_channel_dimension_format |
|
|
|
|
|
API_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
DEVICE = torch.device("cuda") |
|
PROCESSOR = AutoProcessor.from_pretrained( |
|
"HuggingFaceM4/tr_272_bis_opt_step_15000_merge", |
|
token=API_TOKEN, |
|
) |
|
MODEL = AutoModelForCausalLM.from_pretrained( |
|
"HuggingFaceM4/tr_272_bis_opt_step_15000_merge", |
|
token=API_TOKEN, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
).to(DEVICE) |
|
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents |
|
BOS_TOKEN = PROCESSOR.tokenizer.bos_token |
|
BAD_WORDS_IDS = PROCESSOR.tokenizer( |
|
["<image>", "<fake_token_around_image>"], add_special_tokens=False |
|
).input_ids |
|
|
|
|
|
def convert_to_rgb(image): |
|
|
|
|
|
if image.mode == "RGB": |
|
return image |
|
|
|
image_rgba = image.convert("RGBA") |
|
background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) |
|
alpha_composite = Image.alpha_composite(background, image_rgba) |
|
alpha_composite = alpha_composite.convert("RGB") |
|
return alpha_composite |
|
|
|
|
|
|
|
|
|
def custom_transform(x): |
|
x = convert_to_rgb(x) |
|
x = to_numpy_array(x) |
|
|
|
height, width = x.shape[:2] |
|
aspect_ratio = width / height |
|
if width >= height and width > 980: |
|
width = 980 |
|
height = int(width / aspect_ratio) |
|
elif height > width and height > 980: |
|
height = 980 |
|
width = int(height * aspect_ratio) |
|
width = max(width, 378) |
|
height = max(height, 378) |
|
|
|
x = resize(x, (height, width), resample=PILImageResampling.BILINEAR) |
|
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255) |
|
x = PROCESSOR.image_processor.normalize( |
|
x, |
|
mean=PROCESSOR.image_processor.image_mean, |
|
std=PROCESSOR.image_processor.image_std, |
|
) |
|
x = to_channel_dimension_format(x, ChannelDimension.FIRST) |
|
x = torch.tensor(x) |
|
return x |
|
|
|
|
|
def download_image(url): |
|
try: |
|
|
|
response = requests.get(url) |
|
|
|
if response.status_code == 200: |
|
|
|
image = Image.open(BytesIO(response.content)) |
|
|
|
return image |
|
else: |
|
print(f"Failed to download image. Status code: {response.status_code}") |
|
return None |
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
return None |
|
|
|
|
|
|
|
image_seq = "<image>" * image_seq_len |
|
|
|
instruction = "What is this?" |
|
|
|
image = download_image( |
|
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" |
|
) |
|
|
|
|
|
def ask_vlm(instruction, image): |
|
|
|
inputs = PROCESSOR.tokenizer( |
|
[ |
|
f"{BOS_TOKEN}<fake_token_around_image>{image_seq}<fake_token_around_image>{instruction}", |
|
], |
|
return_tensors="pt", |
|
add_special_tokens=False, |
|
padding=True, |
|
) |
|
|
|
raw_images = [ |
|
[image], |
|
] |
|
output_images = [ |
|
[PROCESSOR.image_processor(img, transform=custom_transform) for img in img_list] |
|
for img_list in raw_images |
|
] |
|
total_batch_size = len(output_images) |
|
max_num_images = max([len(img_l) for img_l in output_images]) |
|
max_height = max([i.size(2) for img_l in output_images for i in img_l]) |
|
max_width = max([i.size(3) for img_l in output_images for i in img_l]) |
|
padded_image_tensor = torch.zeros( |
|
total_batch_size, max_num_images, 3, max_height, max_width |
|
) |
|
padded_pixel_attention_masks = torch.zeros( |
|
total_batch_size, max_num_images, max_height, max_width, dtype=torch.bool |
|
) |
|
for batch_idx, img_l in enumerate(output_images): |
|
for img_idx, img in enumerate(img_l): |
|
im_height, im_width = img.size()[2:] |
|
padded_image_tensor[batch_idx, img_idx, :, :im_height, :im_width] = img |
|
padded_pixel_attention_masks[batch_idx, img_idx, :im_height, :im_width] = ( |
|
True |
|
) |
|
|
|
inputs["pixel_values"] = padded_image_tensor |
|
inputs["pixel_attention_mask"] = padded_pixel_attention_masks |
|
inputs = {k: v.to(DEVICE) for k, v in inputs.items()} |
|
|
|
generated_ids = MODEL.generate( |
|
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10 |
|
) |
|
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True) |
|
return generated_texts |
|
|
|
|
|
print(ask_vlm(instruction, image)) |
|
|