|
from parler_tts import ParlerTTSForConditionalGeneration |
|
from transformers import AutoTokenizer |
|
import soundfile as sf |
|
import pygame |
|
from dora import DoraStatus |
|
|
|
model = ParlerTTSForConditionalGeneration.from_pretrained( |
|
"parler-tts/parler_tts_mini_v0.1" |
|
).to("cuda:0") |
|
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler_tts_mini_v0.1") |
|
|
|
pygame.mixer.init() |
|
|
|
input_ids = tokenizer( |
|
"A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast.", |
|
return_tensors="pt", |
|
).input_ids.to("cuda:0") |
|
|
|
|
|
class Operator: |
|
def on_event( |
|
self, |
|
dora_event, |
|
send_output, |
|
): |
|
if dora_event["type"] == "INPUT": |
|
generation = model.generate( |
|
max_new_tokens=300, |
|
input_ids=input_ids, |
|
prompt_input_ids=tokenizer( |
|
dora_event["value"][0].as_py(), return_tensors="pt" |
|
).input_ids.to("cuda:0"), |
|
) |
|
print(dora_event["value"][0].as_py(), flush=True) |
|
sf.write( |
|
f"parler_tts_out.wav", |
|
generation.cpu().numpy().squeeze(), |
|
model.config.sampling_rate, |
|
) |
|
|
|
while pygame.mixer.get_busy(): |
|
pass |
|
pygame.mixer.music.load(f"parler_tts_out.wav") |
|
pygame.mixer.music.play() |
|
|
|
return DoraStatus.CONTINUE |
|
|