dora-idefics2 / operators /planning_op.py
haixuantao's picture
Adding S1 hack into the readme and improving navigation points
037f860
raw
history blame
7.02 kB
import time
import numpy as np
import pyarrow as pa
from dora import DoraStatus
from constants import LOCATION
CAMERA_WIDTH = 960
CAMERA_HEIGHT = 540
def check_clear_road(bboxes, image_width, goal_x):
"""
Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.
Parameters:
- bboxes (np.array): A numpy array where each row represents a bounding box with
the format [min_x, min_y, max_x, max_y, confidence, label].
- image_width (int): The width of the image in pixels.
Returns:
- int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
"""
if bboxes.size == 0:
# No bounding boxes, return the midpoint of the image as the largest gap
return goal_x
events = []
for bbox in bboxes:
min_x, max_x = bbox[0], bbox[2]
events.append((min_x, "enter"))
events.append((max_x, "exit"))
# Include image boundaries as part of the events
events.append(
(0, "exit")
) # Start of the image, considered an 'exit' point for logic simplicity
events.append(
(image_width, "enter")
) # End of the image, considered an 'enter' point
# Sort events, with exits before enters at the same position to ensure gap calculation correctness
events.sort(key=lambda x: (x[0], x[1] == "enter"))
# Sweep line algorithm to find the largest gap
current_boxes = 1
last_x = 0
largest_gap = 0
gap_start_x = None
largest_gap_mid = None # Midpoint of the largest gap
for x, event_type in events:
if current_boxes == 0 and gap_start_x is not None:
# Calculate gap
gap = x - gap_start_x
gap_end_x = gap_start_x + x
if goal_x < gap_end_x and goal_x > gap_start_x:
return True
elif goal_x < gap_start_x:
return False
if event_type == "enter":
current_boxes += 1
if current_boxes == 1:
gap_start_x = None # No longer in a gap
elif event_type == "exit":
current_boxes -= 1
if current_boxes == 0:
gap_start_x = x # Start of a potential gap
return False
class Operator:
def __init__(self):
self.bboxs = None
self.time = time.time()
self.position = [0, 0, 0]
self.waypoints = None
self.tf = np.array([[1, 0], [0, 1]])
self.count = 0
self.completed = True
self.image = None
self.goal = ""
self.current_location = "HOME"
def on_event(
self,
dora_event: dict,
send_output,
) -> DoraStatus:
if dora_event["type"] == "INPUT":
id = dora_event["id"]
if id == "image":
value = dora_event["value"].to_numpy()
self.image = value.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
elif id == "control_reply":
value = dora_event["value"].to_numpy()[0]
if value == self.count:
self.completed = True
elif id == "set_goal":
self.goal = dora_event["value"][0].as_py()
print("got goal:", self.goal, flush=True)
if len(dora_event["value"]) > 0:
if self.goal != "":
self.waypoints = LOCATION[self.current_location][self.goal]
elif id == "position":
print("got position:", dora_event["value"], flush=True)
value = dora_event["value"].to_numpy()
[x, y, z] = value
self.position = [x, y, z]
if self.image is None:
print("no image", flush=True)
return DoraStatus.CONTINUE
## No bounding box yet
if self.completed == False:
print("not completed", flush=True)
return DoraStatus.CONTINUE
if self.waypoints is None:
print("no waypoint", flush=True)
return DoraStatus.CONTINUE
# Set Waypoints to None if goal reached
# Remove waypoints if completed
elif (
self.waypoints.shape[0] == 1
and np.linalg.norm(self.waypoints[0] - np.array([x, y])) < 0.2
):
print("goal reached", flush=True)
self.current_location = self.goal
send_output(
f"reached_{self.goal.lower()}", pa.array(self.image.ravel())
)
self.waypoints = None
return DoraStatus.CONTINUE
elif (
self.waypoints.size > 0
and np.linalg.norm(self.waypoints[0] - np.array([x, y])) < 0.1
):
self.waypoints = self.waypoints[1:]
print("removing waypoints", flush=True)
z = np.deg2rad(z)
self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
goal = self.tf.dot(self.waypoints[0] - np.array([x, y]))
goal_camera_x = (
CAMERA_WIDTH * np.arctan2(goal[1], goal[0]) / np.pi
) + CAMERA_WIDTH / 2
goal_angle = np.arctan2(goal[1], goal[0]) * 180 / np.pi
print(
"position",
[x, y],
"goal:",
goal,
"Goal angle: ",
np.arctan2(goal[1], goal[0]) * 180 / np.pi,
"z: ",
np.rad2deg(z),
"x: ",
goal_camera_x,
"count: ",
self.count,
flush=True,
)
self.count += 1
self.completed = False
message = pa.array(
[
{
"action": "gimbal",
"value": [10.0, float(int(goal_angle))],
"count": self.count,
},
{
"value": [
self.waypoints[0][0] - x,
self.waypoints[0][1] - y,
0.0, # -goal_angle,
0.8,
0.0, # 50,
],
"action": "control",
},
]
)
print("sending:", message, flush=True)
send_output(
"control",
message,
dora_event["metadata"],
)
return DoraStatus.CONTINUE