haixuantao's picture
updating clarity of the video
8852f54
raw
history blame
5.76 kB
import cv2
import numpy as np
from dora import DoraStatus
CAMERA_WIDTH = 960
CAMERA_HEIGHT = 540
FONT = cv2.FONT_HERSHEY_SIMPLEX
writer = cv2.VideoWriter(
"output01.avi",
cv2.VideoWriter_fourcc(*"MJPG"),
60,
(CAMERA_WIDTH, CAMERA_HEIGHT),
)
GOAL_OBJECTIVES = [10, 0]
import numpy as np
def find_largest_gap_midpoint(bboxes, image_width, goal_x):
"""
Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.
Parameters:
- bboxes (np.array): A numpy array where each row represents a bounding box with
the format [min_x, min_y, max_x, max_y, confidence, label].
- image_width (int): The width of the image in pixels.
Returns:
- int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
"""
if bboxes.size == 0:
# No bounding boxes, return the midpoint of the image as the largest gap
return image_width // 2
events = []
for bbox in bboxes:
min_x, max_x = bbox[0], bbox[2]
events.append((min_x, "enter"))
events.append((max_x, "exit"))
# Include image boundaries as part of the events
events.append(
(0, "exit")
) # Start of the image, considered an 'exit' point for logic simplicity
events.append(
(image_width, "enter")
) # End of the image, considered an 'enter' point
# Sort events, with exits before enters at the same position to ensure gap calculation correctness
events.sort(key=lambda x: (x[0], x[1] == "enter"))
# Sweep line algorithm to find the largest gap
current_boxes = 1
last_x = 0
largest_gap = 0
gap_start_x = None
largest_gap_mid = None # Midpoint of the largest gap
for x, event_type in events:
if current_boxes == 0 and gap_start_x is not None:
# Calculate gap
gap = x - gap_start_x
if gap > largest_gap:
largest_gap = gap
gap_end_x = gap_start_x + x
largest_gap_mid = (gap_start_x + x) // 2
if goal_x < gap_end_x and goal_x > gap_start_x:
return goal_x
return largest_gap_mid
# elif goal_x > gap_end_x:
# return max(gap_end_x - 50, largest_gap_mid)
# elif goal_x < gap_start_x:
# return min(gap_start_x + 50, largest_gap_mid)
if event_type == "enter":
current_boxes += 1
if current_boxes == 1:
gap_start_x = None # No longer in a gap
elif event_type == "exit":
current_boxes -= 1
if current_boxes == 0:
gap_start_x = x # Start of a potential gap
return largest_gap_mid
class Operator:
"""
Plot image and bounding box
"""
def __init__(self):
self.bboxs = []
self.buffer = ""
self.submitted = []
self.lines = []
self.gap_x = CAMERA_WIDTH // 2
self.position = [0, 0, 0]
def on_event(
self,
dora_event,
send_output,
):
if dora_event["type"] == "INPUT":
id = dora_event["id"]
value = dora_event["value"]
if id == "position":
value = dora_event["value"].to_numpy()
[x, y, z] = value
self.position = [x, y, z]
if id == "image":
image = (
value.to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)).copy()
)
cv2.resize(image, (CAMERA_HEIGHT * 2, CAMERA_WIDTH * 2))
cv2.putText(
image, self.buffer, (20, 14 + 15 * 25), FONT, 0.5, (190, 250, 0), 2
)
cv2.putText(
image,
f"pos: {self.position}",
(20, 20),
FONT,
0.5,
(190, 250, 100),
2,
)
i = 0
for text in self.submitted[::-1]:
color = (
(0, 255, 190)
if text["role"] == "user_message"
else (0, 190, 255)
)
cv2.putText(
image,
text["content"],
(
20,
14 + (13 - i) * 25,
),
FONT,
0.5,
color,
2,
)
i += 1
writer.write(image)
cv2.resize(image, (CAMERA_HEIGHT * 3, CAMERA_WIDTH * 3))
cv2.imshow("frame", image)
if cv2.waitKey(1) & 0xFF == ord("q"):
return DoraStatus.STOP
elif id == "keyboard_buffer":
self.buffer = value[0].as_py()
elif id == "bbox":
self.bboxs = value.to_numpy().reshape((-1, 6))
self.gap_x = find_largest_gap_midpoint(
self.bboxs, image_width=CAMERA_WIDTH, goal_x=10
)
elif "message" in id:
self.submitted += [
{
"role": id,
"content": value[0]
.as_py()
.replace("\n", " ")
.replace("- ", ""),
}
]
return DoraStatus.CONTINUE
## Angle = Arctan Proj Object y / x
## Relation linearire 0 - 60 ; 0 - CAMERA_WIDTH