|
from dora import DoraStatus |
|
import pylcs |
|
import os |
|
import pyarrow as pa |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
import re |
|
import time |
|
|
|
CHATGPT = False |
|
MODEL_NAME_OR_PATH = "TheBloke/deepseek-coder-6.7B-instruct-GPTQ" |
|
|
|
CODE_MODIFIER_TEMPLATE = """ |
|
### Instruction |
|
Respond with one block of modified code only in ```python block. No explaination. |
|
|
|
```python |
|
{code} |
|
``` |
|
|
|
{user_message} |
|
|
|
### Response: |
|
""" |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
revision="main", |
|
max_length=1024, |
|
).to("cuda:0") |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) |
|
|
|
|
|
def extract_python_code_blocks(text): |
|
""" |
|
Extracts Python code blocks from the given text that are enclosed in triple backticks with a python language identifier. |
|
|
|
Parameters: |
|
- text: A string that may contain one or more Python code blocks. |
|
|
|
Returns: |
|
- A list of strings, where each string is a block of Python code extracted from the text. |
|
""" |
|
pattern = r"```python\n(.*?)\n```" |
|
matches = re.findall(pattern, text, re.DOTALL) |
|
if len(matches) == 0: |
|
pattern = r"```python\n(.*?)(?:\n```|$)" |
|
matches = re.findall(pattern, text, re.DOTALL) |
|
if len(matches) == 0: |
|
return [text] |
|
else: |
|
matches = [remove_last_line(matches[0])] |
|
|
|
return matches |
|
|
|
|
|
def remove_last_line(python_code): |
|
""" |
|
Removes the last line from a given string of Python code. |
|
|
|
Parameters: |
|
- python_code: A string representing Python source code. |
|
|
|
Returns: |
|
- A string with the last line removed. |
|
""" |
|
lines = python_code.split("\n") |
|
if lines: |
|
lines.pop() |
|
return "\n".join(lines) |
|
|
|
|
|
def calculate_similarity(source, target): |
|
""" |
|
Calculate a similarity score between the source and target strings. |
|
This uses the edit distance relative to the length of the strings. |
|
""" |
|
edit_distance = pylcs.edit_distance(source, target) |
|
max_length = max(len(source), len(target)) |
|
|
|
similarity = 1 - (edit_distance / max_length) |
|
return similarity |
|
|
|
|
|
def find_best_match_location(source_code, target_block): |
|
""" |
|
Find the best match for the target_block within the source_code by searching line by line, |
|
considering blocks of varying lengths. |
|
""" |
|
source_lines = source_code.split("\n") |
|
target_lines = target_block.split("\n") |
|
|
|
best_similarity = 0 |
|
best_start_index = 0 |
|
best_end_index = -1 |
|
|
|
|
|
for start_index in range(len(source_lines) - len(target_lines) + 1): |
|
for end_index in range(start_index + len(target_lines), len(source_lines) + 1): |
|
current_window = "\n".join(source_lines[start_index:end_index]) |
|
current_similarity = calculate_similarity(current_window, target_block) |
|
if current_similarity > best_similarity: |
|
best_similarity = current_similarity |
|
best_start_index = start_index |
|
best_end_index = end_index |
|
|
|
|
|
char_start_index = len("\n".join(source_lines[:best_start_index])) + ( |
|
1 if best_start_index > 0 else 0 |
|
) |
|
char_end_index = len("\n".join(source_lines[:best_end_index])) |
|
|
|
return char_start_index, char_end_index |
|
|
|
|
|
def replace_code_in_source(source_code, replacement_block: str): |
|
""" |
|
Replace the best matching block in the source_code with the replacement_block, considering variable block lengths. |
|
""" |
|
replacement_block = extract_python_code_blocks(replacement_block)[0] |
|
start_index, end_index = find_best_match_location(source_code, replacement_block) |
|
if start_index != -1 and end_index != -1: |
|
|
|
new_source = ( |
|
source_code[:start_index] + replacement_block + source_code[end_index:] |
|
) |
|
return new_source |
|
else: |
|
return source_code |
|
|
|
|
|
class Operator: |
|
|
|
def on_event( |
|
self, |
|
dora_event, |
|
send_output, |
|
) -> DoraStatus: |
|
global model, tokenizer |
|
if dora_event["type"] == "INPUT" and dora_event["id"] == "text": |
|
input = dora_event["value"][0].as_py() |
|
|
|
current_file_path = __file__ |
|
|
|
|
|
current_directory = os.path.dirname(current_file_path) |
|
path = current_directory + "/policy.py" |
|
|
|
with open(path, "r", encoding="utf8") as f: |
|
code = f.read() |
|
|
|
user_message = input |
|
start_llm = time.time() |
|
|
|
output = self.ask_llm( |
|
CODE_MODIFIER_TEMPLATE.format(code=code, user_message=user_message) |
|
) |
|
|
|
source_code = replace_code_in_source(code, output) |
|
print("response time:", time.time() - start_llm, flush=True) |
|
|
|
print("response: ", output, flush=True) |
|
with open(path, "w") as file: |
|
file.write(source_code) |
|
del model |
|
del tokenizer |
|
|
|
import gc |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
time.sleep(9) |
|
send_output("init", pa.array([])) |
|
|
|
|
|
return DoraStatus.STOP |
|
|
|
return DoraStatus.CONTINUE |
|
|
|
def ask_llm(self, prompt): |
|
|
|
|
|
|
|
input = tokenizer(prompt, return_tensors="pt") |
|
input_ids = input.input_ids.cuda() |
|
|
|
|
|
attention_mask = input.attention_mask.cuda() |
|
|
|
output = model.generate( |
|
inputs=input_ids, |
|
temperature=0.7, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=40, |
|
max_new_tokens=512, |
|
attention_mask=attention_mask, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
|
|
return tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt) :] |
|
|
|
|
|
if __name__ == "__main__": |
|
op = Operator() |
|
|
|
|
|
current_file_path = __file__ |
|
|
|
|
|
current_directory = os.path.dirname(current_file_path) |
|
|
|
path = current_directory + "/policy.py" |
|
with open(path, "r", encoding="utf8") as f: |
|
raw = f.read() |
|
|
|
op.on_event( |
|
{ |
|
"type": "INPUT", |
|
"id": "text", |
|
"value": pa.array( |
|
[ |
|
{ |
|
"path": path, |
|
"user_message": "go to the living room, ask the model if there is people, if there is, say i'm going to go get coffee for you, then go to the kitchen, when you reach the kitchen, check with the model if there is a person and say can i have a coffee please, then wait 10 sec and go back to the living room", |
|
}, |
|
] |
|
), |
|
"metadata": [], |
|
}, |
|
print, |
|
) |
|
|