import time import numpy as np import pyarrow as pa from dora import DoraStatus GOAL = np.array([10, 20]) HOME_TO_KITCHEN = np.array([[0.5, 0], [0.5, -5.0], [1.0, 7.0]]) KITCHEN_TO_HOME = np.array([[2.0, 0.0], [0.0, 0.0]]) CAMERA_WIDTH = 960 CAMERA_HEIGHT = 540 def check_clear_road(bboxes, image_width, goal_x): """ Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap. Parameters: - bboxes (np.array): A numpy array where each row represents a bounding box with the format [min_x, min_y, max_x, max_y, confidence, label]. - image_width (int): The width of the image in pixels. Returns: - int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap. """ if bboxes.size == 0: # No bounding boxes, return the midpoint of the image as the largest gap return goal_x events = [] for bbox in bboxes: min_x, max_x = bbox[0], bbox[2] events.append((min_x, "enter")) events.append((max_x, "exit")) # Include image boundaries as part of the events events.append( (0, "exit") ) # Start of the image, considered an 'exit' point for logic simplicity events.append( (image_width, "enter") ) # End of the image, considered an 'enter' point # Sort events, with exits before enters at the same position to ensure gap calculation correctness events.sort(key=lambda x: (x[0], x[1] == "enter")) # Sweep line algorithm to find the largest gap current_boxes = 1 last_x = 0 largest_gap = 0 gap_start_x = None largest_gap_mid = None # Midpoint of the largest gap for x, event_type in events: if current_boxes == 0 and gap_start_x is not None: # Calculate gap gap = x - gap_start_x gap_end_x = gap_start_x + x if goal_x < gap_end_x and goal_x > gap_start_x: return True elif goal_x < gap_start_x: return False if event_type == "enter": current_boxes += 1 if current_boxes == 1: gap_start_x = None # No longer in a gap elif event_type == "exit": current_boxes -= 1 if current_boxes == 0: gap_start_x = x # Start of a potential gap return False class Operator: def __init__(self): self.bboxs = None self.time = time.time() self.position = [0, 0, 0] self.waypoints = None self.tf = np.array([[1, 0], [0, 1]]) self.count = 0 self.completed = True self.image = None def on_event( self, dora_event: dict, send_output, ) -> DoraStatus: global POSITION_GOAL, GIMBAL_GOAL if dora_event["type"] == "INPUT": id = dora_event["id"] if id == "tick": self.time = time.time() elif id == "image": value = dora_event["value"].to_numpy() self.image = value.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) elif id == "control_reply": value = dora_event["value"].to_numpy()[0] if value == self.count: self.completed = True elif id == "set_goal": print("got goal:", dora_event["value"], flush=True) if len(dora_event["value"]) > 0: self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2)) elif id == "position": ## No bounding box yet if self.waypoints is None: print("no waypoint", flush=True) return DoraStatus.CONTINUE if self.completed == False: print("not completed", flush=True) return DoraStatus.CONTINUE value = dora_event["value"].to_numpy() [x, y, z] = value self.position = [x, y, z] # Remove waypoints if completed if ( len(self.waypoints) > 0 and np.linalg.norm(self.waypoints[0] - [x, y]) < 0.2 ): self.waypoints = self.waypoints[1:] print("removing waypoints", flush=True) if len(self.waypoints) == 0: print("goal reached", flush=True) send_output("goal_reached", pa.array(self.image.ravel())) self.waypoints = None return DoraStatus.CONTINUE z = np.deg2rad(z) self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]]) goal = self.tf.dot(self.waypoints[0]) goal_camera_x = ( CAMERA_WIDTH * np.arctan2(goal[1], goal[0]) / np.pi ) + CAMERA_WIDTH / 2 goal_angle = np.arctan2(goal[1], goal[0]) * 180 / np.pi print( "position", [x, y], "goal:", goal, "Goal angle: ", np.arctan2(goal[1], goal[0]) * 180 / np.pi, "z: ", np.rad2deg(z), "x: ", goal_camera_x, "count: ", self.count, flush=True, ) if True: # check_clear_road(self.bboxs, CAMERA_WIDTH, goal_camera_x): self.count += 1 self.completed = False send_output( "control", pa.array( [ { "action": "gimbal", "value": [0.0, goal_angle], "count": self.count, }, # { # "value": [ # 0.0, # 0.0, # -goal_angle, # 0.0, # 50, # ], # "action": "control", # }, { "value": [ self.waypoints[0][0], self.waypoints[0][1], 0.0, # -goal_angle, 0.6, 0.0, # 50, ], "action": "control", }, ] ), dora_event["metadata"], ) return DoraStatus.CONTINUE