from dora import DoraStatus import pyarrow as pa from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig import torch import gc CAMERA_WIDTH = 1280 CAMERA_HEIGHT = 720 PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible") BAD_WORDS_IDS = PROCESSOR.tokenizer( ["", ""], add_special_tokens=False ).input_ids EOS_WORDS_IDS = PROCESSOR.tokenizer( "", add_special_tokens=False ).input_ids + [PROCESSOR.tokenizer.eos_token_id] model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceM4/idefics2-tfrm-compatible-AWQ", quantization_config=AwqConfig( bits=4, fuse_max_seq_len=4096, modules_to_fuse={ "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], "mlp": ["gate_proj", "up_proj", "down_proj"], "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], "use_alibi": False, "num_attention_heads": 32, "num_key_value_heads": 8, "hidden_size": 4096, }, ), trust_remote_code=True, ).to("cuda") def reset_awq_cache(model): """ Simple method to reset the AWQ fused modules cache """ from awq.modules.fused.attn import QuantAttentionFused for name, module in model.named_modules(): if isinstance(module, QuantAttentionFused): module.start_pos = 0 def ask_vlm(image, instruction): global model prompts = [ "User:", image, f"{instruction}.\n", "Assistant:", ] inputs = {k: torch.tensor(v).to("cuda") for k, v in PROCESSOR(prompts).items()} generated_ids = model.generate( **inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=25, repetition_penalty=1.2, ) generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True) reset_awq_cache(model) gc.collect() torch.cuda.empty_cache() return generated_texts[0].split("\nAssistant: ")[1] import time class Operator: def __init__(self): self.image = None self.text = None def on_event( self, dora_event, send_output, ) -> DoraStatus: if dora_event["type"] == "INPUT": if dora_event["id"] == "image": self.image = ( dora_event["value"] .to_numpy() .reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) ) elif dora_event["id"] == "text": self.text = dora_event["value"][0].as_py() output = ask_vlm(self.image, self.text).lower() send_output( "speak", pa.array([output]), ) if "yes" in output: send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 50.0, 0.0]), ) time.sleep(2) send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]), ) elif "no" in output: send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0]), ) time.sleep(2) send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]), ) return DoraStatus.CONTINUE